TEMA D’ESAME 8-5-2014 Data la v.a. 1- Xunif {1,…,6}, dado equilibrato di 6 facce, scrivere la legge di probabilità pX(x) calcolando anche E(X) e var(X) 2- Xexp(), scrivere la densità fX(x) calcolando anche E(X) e var(X) Se X1, …, Xn è un c.c estratto da X, calcolare la distribuzione della v.a. Y2=X1+X2: 1- Nel caso di Xunif {1,…,6} 2- Nel caso di Xexp() Quanto vale la probabilità di osservare il valore modale di Y 3=X1+X2+X3? E il valore meno probabile? 1- Nel caso di Xunif {1,…,6} 2- Nel caso di Xexp() Due giocatori A e B giocano a dadi con un dado equilibrato a testa. Ciascuno tira il suo dado e vince chi fa il punteggio più alto. A e B decidono di fare 100 tiri. Determinare la distribuzione di probabilità del numero di tiri vinti da A. Calcolare il valore atteso dei tiri vinti da A e il numero atteso di tiri finiti in pareggio. Similmente sia la v.a. Y:”numero di tiri finiti in pareggio” A e B decidono ora di tirare fino a che uno dei due non vince. Scrivere la distribuzione di probabilità del numero complessivo di tiri necessari a terminare la partita. Calcolare valore atteso e varianza del numero di tiri necessari a terminare la partita. Sapendo che il primo tiro è finito in pareggio, con che probabilità ce ne vorranno almeno altri due per finire la partita? Un automobilista deve posteggiare l’auto all’interno di un autosilo a più piani. Ad ogni piano si trovano un numero uguale di parcheggi numerati progressivamente da 1 ( primo posto al primo piano) a n (ultimo posto al 10° piano). Associamo all’i-esimo posto – auto una v.a. Xi che assume valore 1 quando il posto è libero e 0 viceversa. Assumiamo che la disponibilità di posti sia equamente distribuita, il che implica che la probabilità di trovare libero il posto i-esimo è e questo per ogni i indipendentemente dal piano e supponiamo inoltre che le Xi siano indipendenti. Scrivere la legge di probabilità della v.a. Xi. Periodicamente in ogni piano viene effettuato un conteggio dei posti liberi: Ogni piano contiene k posti auto degli n complessivi. Si consideri la v.a. Y1 “numero dei posti liberi al piano 1”. Scriverne la legge di probabilità evidenziando il legame fra i valori di Xi e quello di Y1. Allo stesso modo si consideri la v.a. Y 1+Y2 “numero di posti liberi al primo e al secondo piano”. Come si distribuisce? E come si distribuisce la v.a. “numero dei posti liberi nell’autosilo”? Ad ogni piano c’è un semaforo che è rosso quando il piano è completo. Quanto vale la probabilità che a un dato piano il semaforo sia rosso. Dato che è verde quanto vale la probabilità che tutto il piano sia libero? Sapendo che nei primi due piani ci sono x posti liberi, quanto vale la probabilità che nel primo piano ci possano stare y auto? Sapendo che due auto entrano una dopo l’altra, detta Q la v.a. numero di posti che la seconda auto deve far passare prima di trovare posto calcolare la legge di Q. TEMA 9 FEBBRAIO 2011 “La mente è fatta per interpretare il mondo come qualcosa di organizzato, spesso individuando forme e strutture che in realtà non esistono. Con questa predisposizione a individuare forme e strutture, c’è una certa probabilità che una persona possa vedere prove dell’esistenza di catene di eventi dotate di significato laddove non ve ne sono”. Sia X una v.a. bernoulliana di parametro . Scrivere la sua legge di probabilità pX(x) e fare il grafico della sua funzione cumulativa FX(x). Sia ora un c.c. di dimensione n preso dalla popolazione X. Scrivere la legge congiunta p(X)(x). Scrivere la legge della v.a. 𝑦 = ∑𝑛𝑗=1 𝑋𝑗 Calcolare E(X) e var(X) TEMA 05-05-2015 Una linea di produzione di componenti elettronici viene sottoposta a un controllo di qualità. Il monitoraggio consiste nell’associare ad ogni componente esaminato un valore X che sarà “0” se il componente è conforme alle specifiche e “1” in caso contrario. Si suppone che ogni componente sia conforme o meno indipendentemente dagli altri e che la probabilità di non essere conforme valga . Data una sequenza di componenti nelle condizioni sopraddette sia T la v.a. che conta il numero di insuccessi che precedono il primo successo. Come si distribuisce T? Sapendo che fino al ventesimo componente uno solo è difettoso, come si distribuisce la v.a. T’ “numero di componenti conformi prima del primo NON conforme”? Quanto valgono E(T) e var(T)? Alla luce della domanda precedente, è plausibile che i seguenti 100 valori siano osservazioni da T? 0101110001100000003100110000221110100010000000101010000200… (Per comodità 70 attese pari a 0, 25 attse pèari a 1, 4 attese pari a 2 e 1 attesa pari a 3). Quale proprietà caratterizza la v.a. geometrica? A quale condizionamento bisogna sottoporre il c.c. precedente per ottenere il campione “filtrato” seguente? 1111111311122111…. Quale stima si può proporre per P(T1) sulla base dei calcoli al punto precedente e quale stima si può proporre per P(T2)? Alla luce delle stime precedenti si può concludere (in modo qualitativo) che il c.c. (0101110001100000003100110000221110100010000000101010000200 …)provenga da T? Ad ogni osservazione della v.a. T quante osservazioni della v.a. X corrispondono? (Se T=0 allora 1 osservazione da X, se T=1 allora 2 osservazioni da X…). Ricavare delle prime osservazioni del campione 0101110001100000003100110000221110100010000000101010000200… un campione di 10 osservazioni dalla X. La v.a di conteggio degli 1 da queste 10 osservazioni quale legge segue?