Matematica – corso tecnico 2016/2017

Istituto di Istruzione superiore “Arturo Prever” – sez. coordinata di Osasco
Istituto Tecnico Agrario
Anno Scolastico 2016 - 2017
PROGRAMMAZIONE ANNUALE
MATERIA: MATEMATICA
Docenti: prof. KONIG
Bettina
prof. VIGNOTTI Margherita Maria
1) Ore di lavoro settimanali/annuali:
Classe
Ore settimanali
Ore annuali previste
(con eventuale compresenza)
Prime
Seconde
Terze
Quarte
Quinte
4
4
3
3
3
132
132
99
99
99
2) Libri di testo adottati :
Classi prime: Leonardo Sasso – Nuova Matematica a colori – Algebra e Geometria 1- Edizione verde – Petrini
Classi seconde: Leonardo Sasso – Nuova matematica a colori – Algebra e Geometria 2 – Edizione verde – Petrini
Classi terze: Leonardo Sasso – Nuova matematica a colori – Equazioni, disequazioni e funzioni; Piano cartesiano, retta e
trasformazioni; Coniche; Funzioni esponenziali e logaritmiche; Trigonometria – Vol.3 – Edizione verde – Petrini
Classi quarte: Leonardo Sasso – Nuova matematica a colori –Limiti e continuità; Calcolo differenziale e introduzione al calcolo integrale;
Statistica; Probabilità e calcolo combinatorio – vol. 4 - Edizione verde – Petrini
Classe quinta: Leonardo Sasso – Nuova matematica a colori – Misure di superfici e di volumi; Complementi di calcolo integrale;
Complementi di probabilità e statistica – vol. 5 - Edizione verde – Petrini
3) Strumenti di lavoro:
Libri, fotocopie, dispense, sussidi audiovisivi e informatici
4) Finalità generali dello studio della disciplina:
Il docente di “Matematica “ concorre a far conseguire allo studente, al termine del percorso quinquennale, risultati di apprendimento che
lo mettono in grado di: padroneggiare il linguaggio formale e i procedimenti dimostrativi della matematica; possedere gli strumenti
matematici, statistici e del calcolo delle probabilità necessari per la comprensione delle discipline scientifiche e per poter operare nel
campo delle scienze applicate; collocare il pensiero matematico e scientifico nei grandi temi dello sviluppo della storia delle idee, della
cultura, delle scoperte scientifiche e delle invenzioni tecnologiche
5) Finalità specifiche dello studio della disciplina:
Ai fini del raggiungimento dei risultati di apprendimento sopra riportati in esito al percorso quinquennale, nel primo biennio il docente
persegue, nella propria azione didattica ed educativa, l’obiettivo prioritario di far acquisire allo studente le competenze di base attese a
conclusione dell’obbligo di istruzione, di seguito richiamate:
• utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico rappresentandole anche sotto forma grafica
• confrontare ed analizzare figure geometriche, individuando invarianti e relazioni
• individuare le strategie appropriate per la soluzione di problemi
• analizzare dati e interpretarli sviluppando deduzioni e ragionamenti sugli stessi anche con l’ausilio di rappresentazioni grafiche, usando
consapevolmente gli strumenti di calcolo e le potenzialità offerte da applicazioni specifiche di tipo informatico.
I risultati di apprendimento sopra riportati in esito al percorso quinquennale costituiscono il riferimento delle attività didattiche della
disciplina nel secondo biennio e quinto anno. La disciplina, nell’ambito della programmazione del Consiglio di classe, concorre in
particolare al raggiungimento dei seguenti risultati di apprendimento espressi in termini di competenza:

utilizzare il linguaggio e i metodi propri della matematica per organizzare e valutare adeguatamente informazioni qualitative
e quantitative;
 utilizzare le strategie del pensiero razionale negli aspetti dialettici e algoritmici per affrontare situazioni problematiche,
elaborando opportune soluzioni;
 utilizzare i concetti e i modelli delle scienze sperimentali per investigare fenomeni sociali e naturali e per interpretare dati;
 utilizzare le reti e gli strumenti informatici nelle attività di studio, ricerca e approfondimento disciplinare;
 correlare la conoscenza storica generale agli sviluppi delle scienze, delle tecnologie e delle tecniche negli specifici campi professionali
di riferimento.
L’articolazione dell’insegnamento di “Matematica” in conoscenze e abilità è di seguito indicata quale orientamento per la progettazione
didattica del docente in relazione alle scelte compiute nell’ambito della programmazione collegiale del Consiglio di classe ..
6) Metodologie utilizzate :
Lezione frontale, lezione interattiva e/o partecipata, lavori di gruppo.
7) Strategie per il recupero:
• Recupero in itinere
• Sportello di matematica, utilizzando le risorse del potenziamento
PROGRAMMAZIONE ANNUALE
ABILITÀ PREVISTE DALLE LINEE GUIDA PER IL BIENNIO e Obiettivi minimi
ABILITÀ biennio
Abilità minime del biennio
Aritmetica e algebra
Aritmetica e algebra
Utilizzare le procedure del calcolo aritmetico (a
mente,per iscritto, a macchina) per calcolare
espressioni aritmetiche e risolvere problemi;
operare con i numeri interi e razionali e valutare
l’ordine di grandezza dei risultati. Calcolare semplici
espressioni con potenze e radicali. Utilizzare
correttamente il concetto di approssimazione.
Utilizzare le procedure del calcolo aritmetico (per
iscritto e a macchina) per calcolare espressioni
aritmetiche e risolvere semplici problemi; operare
con i numeri interi e razionali. Calcolare semplici
espressioni con potenze. Utilizzare correttamente il
concetto di approssimazione.
Padroneggiare l’uso della lettera come mero simbolo
e come variabile; eseguire le operazioni con i
polinomi; fattorizzare un polinomio.
Eseguire semplici operazioni con
semplici fattorizzazioni di polinomi.
i
polinomi
e
Geometria
Geometria
Eseguire
costruzioni
geometriche
elementari
utilizzando la riga e il compasso e/o strumenti
informatici.
Eseguire
costruzioni
geometriche
elementari
utilizzando la riga e il compasso e/o strumenti
informatici.
Conoscere
e
usare
misure
di
grandezze
geometriche: perimetro, area e volume delle
principali figure geometriche del piano e dello
spazio. Analizzare e risolvere problemi del piano
utilizzando le proprietà delle figure geometriche.
Comprendere dimostrazioni e sviluppare semplici
catene deduttive.
Conoscere
e
usare
misure
di
grandezze
geometriche: perimetro, area e volume delle
principali figure geometriche del piano. Risolvere
semplici problemi.
Relazioni e funzioni
Risolvere equazioni e disequazioni di primo e
secondo grado; risolvere sistemi di equazioni e
disequazioni.
Rappresentare sul piano cartesiano le principali
funzioni incontrate. Studiare le funzioni f(x) = ax+b
e f(x) = ax2+bx+c.
Risolvere problemi che implicano l’uso di equazioni
e di sistemi di equazioni.
Relazioni e funzioni
Risolvere semplici equazioni e disequazioni di primo
e secondo grado; risolvere semplici sistemi di
equazioni e disequazioni.
Rappresentare sul piano cartesiano le principali
funzioni incontrate. Studiare le funzioni f(x) = ax+b
e f(x) = ax2+bx+c.
CONOSCENZE, CONTENUTI ED OBIETTIVI MINIMI DELLA CLASSE PRIMA
Conoscenze
Contenuti
Obiettivi e contenuti minimi
Aritmetica e algebra
Aritmetica e algebra
Aritmetica e algebra
I numeri: naturali,
interi, razionali, sotto
forma frazionaria e
decimale, irrazionali e,
in forma intuitiva, reali;
ordinamento e loro
rappresentazione su
retta. Le operazioni con
i numeri interi e
razionali e le loro
proprietà. Potenze e
radici. Rapporti e
percentuali.
Approssimazioni.
Le espressioni letterali
e i polinomi. Operazioni
con i polinomi.
Equazioni di primo
grado numeriche
intere.
Le operazioni in N; potenze ed espressioni in
N; multipli e divisori; le operazioni in Z;
potenze ed espressioni in Z; operazioni tra
numeri razionali assoluti; numeri decimali;
rapporti, proporzioni e percentuali; operazioni
in Q; potenze ed espressioni in Q;
introduzione ai numeri reali.
Saper svolgere semplici espressioni in N, Z e Q applicando
le proprietà più opportune. Saper ricavare il termine
incognito in una proporzione e calcolare percentuali.
Saper svolgere semplici espressioni con monomi e polinomi
utilizzando anche i prodotti notevoli.
Saper scomporre semplici polinomi con le principali regole:
raccoglimento totale, parziale, prodotti notevoli e trinomio
Il calcolo letterale e le espressioni algebriche;i
notevole.
monomi; operazioni con i monomi; massimo
comun divisore i minimo comune multiplo tra Saper semplificare semplici frazioni algebriche e operare
monomi; i polinomi; operazioni tra polinomi; con esse.
prodotti notevoli; la divisione con resto tra
due polinomi; la regola di Ruffini; il teorema Saper risolvere semplici equazioni di primo grado intere.
del resto e il teorema di Ruffini;
scomposizione dei polinomi mediante
raccoglimenti totali e parziali, prodotti
notevoli, trinomi di secondo grado, teorema e
regola di Ruffini; massimo comun divisore i
minimo comune multiplo tra polinomi; le
frazioni algebriche; semplificazione di frazioni
algebriche; operazioni con le frazioni
algebriche; Equazioni di primo grado intere,
Problemi che hanno come modelli equazioni di
primo grado.
Relazioni e funzioni
Relazioni e funzioni
Relazioni e funzioni
Il linguaggio degli
insiemi e delle funzioni.
Le funzioni e la loro
rappresentazione.
Funzioni di
proporzionalità diretta
e inversa. Funzioni
lineari, funzioni
quadratiche.
Gli insiemi e le loro rappresentazioni; i
sottoinsiemi; l’intersezione, l’unione e la
differenza fra insiemi; il prodotto cartesiano;
introduzione alle funzioni; il piano cartesiano
e il grafico di una funzione; le funzioni di
proporzionalità diretta e inversa; le funzioni
lineari;le funzioni di proporzionalità al
quadrato.
Contenuti minimi: rappresentazione degli insiemi, unione e
intersezione di insiemi. Rappresentazione nel piano
cartesiano di semplici funzioni lineari
Saper svolgere semplici esercizi applicando le procedure
viste a lezione
CONOSCENZE, CONTENUTI ED OBIETTIVI MINIMI DELLA CLASSE SECONDA
Conoscenze
Contenuti
Obiettivi e contenuti minimi:
Algebra
Algebra
Algebra
Equazioni e
disequazioni di primo e
secondo grado; Sistemi
di equazioni e
disequazioni.
Equazioni di primo grado frazionarie;
Saper risolvere semplici equazioni e disequazioni di primo
grado.
disequazioni numeriche intere di primo grado;
Saper risolvere semplici sistemi di equazioni di primo grado
disequazioni frazionarie; disequazioni
con il metodo di sostituzione
risolvibili mediante scomposizione in fattori;
sistemi di disequazioni.
Radice n-esima di un
Semplificazione di un radicale; operazioni con
radicale; definizione di
Saper svolgere operazioni con i radicali e razionalizzazione
i radicali; razionalizzazione del denominatore
potenza con esponente
del denominatore di una frazione nei casi più semplici
di una frazione; potenze a esponente
razionale
razionale.
Risoluzione di un sistema lineare con il
metodo di sostituzione e con il metodo di
addizione e sottrazione; sistemi lineari di tre
equazioni in tre incognite.
Equazioni di secondo grado complete e
incomplete, intere e
frazionarie;scomposizione di un trinomio di
secondo grado;sistemi di secondo grado;
la parabola e l’interpretazione grafica di
un’equazione di secondo grado.
Disequazioni di secondo grado; sistemi di
disequazioni contenenti disequazioni di
Saper risolvere semplici equazioni di secondo grado e
sistemi di secondo grado
Saper risolvere semplici disequazioni di secondo grado.
secondo grado.
Equazioni di grado superiore al secondo:
binomie, biquadratiche, trinomie
Geometria
Gli enti fondamentali
della geometria e il
significato dei termini
postulato, assioma,
definizione, teorema,
dimostrazione. Il piano
euclideo:relazioni tra
rette,congruenza di
figure,poligoni e loro
proprietà. Misura di
grandezze; grandezze
incommensurabili.
Circonferenza e
cerchio;
Perimetro e area dei
poligoni; Teorema di
Pitagora;
Geometria
Geometria
Introduzione alla geometria; i primi assiomi
Saper svolgere semplici esercizi guidati e quesiti a risposta
della geometria euclidea; le parti della retta e
chiusa
le poligonali; semipiani e angoli; poligoni; la
congruenza e i segmenti; la congruenza e gli
angoli; i primi teoremi della geometria
euclidea; misura di segmenti e di
angoli;congruenza nei triangoli;rette
perpendicolari e parallele; quadrilateri.
Equivalenza ed equiscomponibilità; aree dei
poligoni; lunghezza della circonferenza e area
del cerchio; Teorema di Pitagora
ABILITÀ PREVISTE DALLE LINEE GUIDA PER IL SECONDO BIENNIO e Obiettivi minimi
ABILITÀ secondo biennio
Risolvere equazioni, disequazioni e sistemi relativi a
funzioni esponenziali, logaritmiche e alla funzione
modulo.
Calcolare limiti di funzioni.
Calcolare derivate di funzioni.
Analizzare esempi di funzioni discontinue o non derivabili
in qualche punto.
Rappresentare in un piano cartesiano e studiare le funzioni
f(x)= a/x, f(x) = ax, f(x) = log x.
Descrivere le proprietà qualitative di una funzione e
costruirne il grafico.
Calcolare derivate di funzioni composte.
Calcolare l'integrale di funzioni elementari.
Calcolare il numero di permutazioni, disposizioni,
combinazioni in un insieme.
Analizzare distribuzioni doppie di frequenze. Classificare
dati secondo due caratteri, rappresentarli graficamente
e riconoscere le diverse componenti delle distribuzioni
doppie.
Abilità minime del secondo biennio
Risolvere equazioni e disequazioni relativi a funzioni
esponenziali e logaritmiche.
Calcolare limiti di funzioni.
Calcolare derivate di funzioni.
Rappresentare in un piano cartesiano e studiare le funzioni
f(x)= a/x, f(x) = ax, f(x) = log x.
Descrivere le proprietà qualitative di una funzione e
costruirne il grafico.
Calcolare derivate di funzioni composte.
Calcolare l'integrale di funzioni elementari.
Calcolare il numero di permutazioni, disposizioni,
combinazioni in un insieme.
CONOSCENZE, CONTENUTI ED OBIETTIVI MINIMI DELLA CLASSE TERZA
Conoscenze
Contenuti
Obiettivi e contenuti minimi:
DAL LIBRO in adozione
Funzioni polinomiali;
funzioni razionali e
irrazionali; funzione
modulo; funzioni
esponenziali e
logaritmiche; funzioni
periodiche.
Le coniche: definizioni
come luoghi
geometrici e loro
rappresentazione nel
piano cartesiano.
Equazioni e disequazioni
Le disequazioni intere di primo e di secondo grado, e di
grado superiore al secondo
Le disequazioni frazionarie
I sistemi di disequazioni
Le equazioni e le disequazioni irrazionali
Le equazioni e disequazioni con valori assoluti
Equazioni e disequazioni
Le disequazioni intere di primo e di
secondo grado, e di grado superiore al
secondo
Le disequazioni frazionarie
I sistemi di disequazioni
Introduzione alle funzioni
Prime proprietà delle funzioni reali di variabile reale
Le trasformazioni e i grafici delle funzioni
Introduzione alle funzioni
Prime proprietà delle funzioni reali di
variabile reale
Le trasformazioni e i grafici delle funzioni
Richiami e complementi sulla retta
Richiami sul piano cartesiano, distanza tra due punti,
punto medio di un segmento e baricentro di un triangolo
La funzione lineare
L’equazione della retta nel piano cartesiano
Rette parallele, rette perpendicolari e posizione reciproca
di due rette
Come determinare l’equazione di una retta
Distanza di un punto da una retta
Richiami e complementi sulla retta
Richiami sul piano cartesiano, distanza tra
due punti, punto medio di un segmento
La funzione lineare
L’equazione della retta nel piano
cartesiano
Rette parallele, rette perpendicolari e
posizione reciproca di due rette
Come determinare l’equazione di una
retta.
Le coniche
Parabola
La parabola con asse parallelo all’asse y
La parabola e la retta
La parabola e le funzioni
Le coniche
Parabola
La parabola con asse parallelo all’asse y
La parabola e la retta
La parabola e le funzioni
Circonferenza
L’equazione della circonferenza
La circonferenza e la retta
Ellisse
L’equazione dell’ellisse
L’ellisse e la retta
Iperbole
L’equazione dell’iperbole
L’iperbole equilatera e la funzione omografica
L’iperbole e la retta
Circonferenza
L’equazione della circonferenza
Ellisse
L’equazione dell’ellisse
Iperbole
L’equazione dell’iperbole
L’iperbole equilatera e la funzione
omografica
Funzioni, equazioni e disequazioni esponenziali
L’insieme dei numeri reali e le potenze a esponente
irrazionale
La funzione esponenziale
Equazioni esponenziali
Disequazioni esponenziali
Funzioni, equazioni e disequazioni
esponenziali
L’insieme dei numeri reali e le potenze a
esponente irrazionale
La funzione esponenziale
Semplici equazioni e disequazioni
esponenziali
Funzioni, equazioni e disequazioni logaritmiche
La funzione logaritmica
Proprietà dei logaritmi
Equazioni logaritmiche ed equazioni esponenziali
risolvibili mediante logaritmi
Disequazioni logaritmiche
Funzioni, equazioni e disequazioni
logaritmiche
La funzione logaritmica
Proprietà dei logaritmi
Semplici equazioni ed equazioni
logaritmiche
Funzioni goniometriche
Angoli e loro misure
Le definizioni delle funzioni goniometriche
Grafici delle funzioni goniometriche
Funzioni goniometriche
Angoli e loro misure
Le definizioni delle funzioni goniometriche
Grafici delle funzioni goniometriche
CONOSCENZE, CONTENUTI ED OBIETTIVI MINIMI DELLA CLASSE QUARTA
Conoscenze
Contenuti
Obiettivi e contenuti minimi
DAL LIBRO in adozione
Funzioni polinomiali;
funzioni razionali e
irrazionali; funzione
modulo; funzioni
esponenziali e
logaritmiche; funzioni
periodiche.
DAL LIBRO DI TERZA
DAL LIBRO DI TERZA
Funzioni e disequazioni esponenziali
La funzione esponenziale
Disequazioni esponenziali
Funzioni e disequazioni esponenziali
La funzione esponenziale
Disequazioni esponenziali
Funzioni, equazioni e disequazioni logaritmiche
La funzione logaritmica
Proprietà dei logaritmi
Equazioni logaritmiche ed equazioni esponenziali
risolvibili mediante logaritmi
Disequazioni logaritmiche
Funzioni, equazioni e disequazioni logaritmiche
La funzione logaritmica
Proprietà dei logaritmi
Semplici equazioni e disequazioni logaritmiche
Funzioni goniometriche
Angoli e loro misure
Le definizioni delle funzioni goniometriche
Grafici delle funzioni goniometriche
Funzioni goniometriche
Angoli e loro misure
Le definizioni delle funzioni goniometriche
Grafici delle funzioni goniometriche
DAL LIBRO DI QUARTA
DAL LIBRO DI QUARTA
Introduzione all’analisi
Introduzione all’analisi
Funzioni reali di variabile reale: dominio e studio del Funzioni reali di variabile reale: dominio e
segno; prime proprietà
studio del segno; prime proprietà
Continuità e limite di
una funzione
Limiti di funzioni reali di variabile reale
Dalla definizione generale alle definizioni particolari
Le funzioni continue e l’algebra dei limiti
Formule di indecisione di funzioni algebriche
Limiti di funzioni reali di variabile reale
Significato grafico e definizione intuitiva di
limite
Le funzioni continue e l’algebra dei limiti
Formule di indecisione di funzioni algebriche
Concetto di derivata di
una funzione.
Proprietà locali e
globali delle funzioni
Continuità
Funzioni continue
Punti di discontinuità e loro classificazione
Asintoti e grafico probabile di una funzione
Continuità
Funzioni continue
Asintoti e grafico probabile di una funzione
La derivata
Il concetto di derivata
Derivate delle funzioni elementari
Algebra delle derivate
Derivata della funzione composta
Classificazione e studio dei punti di non derivabilità
Applicazioni geometriche del concetto di derivata
La derivata
Il concetto di derivata
Derivate delle funzioni elementari
Algebra delle derivate
Derivata della funzione composta
Teoremi sulle funzioni derivabili
Teoremi sulle funzioni derivabili
I teoremi di Fermat, Rolle e Lagrange
Funzioni crescenti e decrescenti e criteri per
Funzioni crescenti e decrescenti e criteri per l’analisi l’analisi dei punti stazionari
dei punti stazionari
Funzioni concave e convesse, punti di flesso
Funzioni concave e convesse, punti di flesso
Lo studio di funzione
Schema per lo studio del grafico di una funzione.
Funzioni algebriche.
Funzioni trascendenti
Lo studio di funzione
Schema per lo studio del grafico di una
funzione. Funzioni algebriche.
Integrale indefinito e
integrale definito.
Teoremi del calcolo
integrale.
Introduzione al calcolo integrale
Primitive ed integrale indefinito
Integrali immediati e integrazione per
scomposizione
Integrazione di funzioni composte
Dalle aree al concetto di integrale definito
Le proprietà dell’integrale definito e il suo calcolo
Introduzione al calcolo integrale
Primitive ed integrale indefinito
Integrali immediati e integrazione per
scomposizione
Dalle aree al concetto di integrale definito
Le proprietà dell’integrale definito e il suo
calcolo
Distribuzioni doppie di
frequenze.
Indicatori statistici
mediante rapporti e
Statistica
Indici di posizione e di variabilità
Tabelle a doppia entrata
Dipendenza e indipendenza statistica
Statistica
Indici di posizione e di variabilità
Tabelle a doppia entrata
Dipendenza e indipendenza statistica
differenze. Concetti di
dipendenza,
correlazione,
regressione.
Distribuzioni di
probabilità:
distribuzione
binomiale.
Distribuzione di Gauss.
Calcolo combinatorio
Disposizioni e permutazioni
Combinazioni
Il teorema del binomio di Newton
Calcolo combinatorio
Disposizioni e permutazioni
Combinazioni
Calcolo delle probabilità
Valutazione della probabilità secondo la definizione
classica
I primi teoremi sul calcolo delle probabilità
Calcolo delle probabilità
Valutazione della probabilità secondo la
definizione classica
I primi teoremi sul calcolo delle probabilità
ABILITÀ PREVISTE DALLE LINEE GUIDA PER IL QUINTO ANNO e Obiettivi minimi
ABILITÀ del quinto anno
Calcolare aree e volumi di solidi e risolvere problemi di
massimo e di minimo.
Calcolare l’integrale di funzioni elementari, per parti e
per sostituzione.
Utilizzare la formula di Bayes nei problemi di
probabilità condizionata.
Abilità minime del quinto anno
Calcolare aree e volumi di solidi.
Calcolare l’integrale di funzioni elementari.
CONOSCENZE, CONTENUTI ED OBIETTIVI MINIMI DELLA CLASSE QUINTA
Conoscenze
Contenuti
Obiettivi e contenuti minimi:
DAL LIBRO in adozione
Concetto di derivata
di una funzione.
Proprietà locali e
globali delle funzioni
Integrale indefinito e
integrale definito.
Teoremi del calcolo
integrale.
DAL LIBRO DI QUARTA
DAL LIBRO DI QUARTA
La derivata
Il concetto di derivata
Derivate delle funzioni elementari
Algebra delle derivate
Derivata della funzione composta
Classificazione e studio dei punti di non derivabilità
Applicazioni geometriche del concetto di derivata
La derivata
Il concetto di derivata
Derivate delle funzioni elementari
Algebra delle derivate
Derivata della funzione composta
Teoremi sulle funzioni derivabili
I teoremi di Fermat, Rolle e Lagrange
Funzioni crescenti e decrescenti e criteri per
l’analisi dei punti stazionari
Funzioni concave e convesse, punti di flesso
Teoremi sulle funzioni derivabili
Funzioni crescenti e decrescenti e criteri per
l’analisi dei punti stazionari
Funzioni concave e convesse, punti di flesso
Lo studio di funzione
Schema per lo studio del grafico di una funzione.
Funzioni algebriche.
Funzioni trascendenti
Lo studio di funzione
Schema per lo studio del grafico di una funzione.
Funzioni algebriche.
Introduzione al calcolo integrale
Primitive ed integrale indefinito
Integrali immediati e integrazione per
scomposizione
Integrazione di funzioni composte
Dalle aree al concetto di integrale definito
Le proprietà dell’integrale definito e il suo calcolo
Introduzione al calcolo integrale
Primitive ed integrale indefinito
Integrali immediati e integrazione per
scomposizione
Dalle aree al concetto di integrale definito
Le proprietà dell’integrale definito e il suo calcolo
Distribuzioni doppie di
frequenze.
Indicatori statistici
mediante rapporti e
differenze. Concetti di
dipendenza,
correlazione,
regressione.
Calcolo delle
probabilità
Il calcolo integrale
nella determinazione
delle aree e dei volumi.
Sezioni di un solido.
Principio di Cavalieri.
Probabilità totale,
condizionata, formula
di Bayes.
Statistica
Tabelle a doppia entrata
Dipendenza e indipendenza statistica
Statistica
Indici di posizione e di variabilità
Tabelle a doppia entrata
Dipendenza e indipendenza statistica
Calcolo combinatorio
Disposizioni e permutazioni
Combinazioni
Il teorema del binomio di Newton
Calcolo combinatorio
Disposizioni e permutazioni
Combinazioni
Calcolo delle probabilità
Valutazione della probabilità secondo la definizione
classica
I primi teoremi sul calcolo delle probabilità
Calcolo delle probabilità
Valutazione della probabilità secondo la
definizione classica
I primi teoremi sul calcolo delle probabilità
DAL LIBRO DI QUINTA
DAL LIBRO DI QUINTA
Area della superficie e volume di un solido
Parallelepipedi e prismi
Piramide e tronco di piramide
Cilindro, cono e tronco di cono
Sfera e parti della sfera
Area della superficie e volume di un solido
Parallelepipedi e prismi
Piramide
Cilindro e cono
Sfera
Complementi sull’integrale indefinito e definito
Integrazione per sostituzione
Integrazione per parti
Applicazioni geometriche degli integrali definiti
Complementi sull’integrale indefinito e definito
Integrazione per sostituzione
Integrazione per parti
Complementi sul calcolo delle probabilità
Probabilità composte ed eventi indipendenti
Il teorema della probabilità totale e il teorema di
Bayes
Complementi sul calcolo delle probabilità
Probabilità composte ed eventi indipendenti
9) STRUMENTI DI VALUTAZIONE, E NUMERO MINIMO PROVE QUADRIMESTRALI
Per la valutazione dello scritto verranno svolte verifiche scritte composte da esercizi e/o problemi
Per la valutazione dell’orale verranno svolte verifiche scritte composte da esercizi, problemi e /o domande oppure interrogazioni
Sia nel primo quadrimestre sia nel secondo quadrimestre si prevede un minimo di tre prove complessive
10) CRITERI DI VALUTAZIONE
In ogni singola prova verrà indicato sia il punteggio per ogni esercizio sia il punteggio necessario per raggiungere la sufficienza.
Per la valutazione di fine quadrimestre, la sufficienza sarà attribuita allo studente che raggiungerà gli obiettivi minimi previsti dal
programma.
11) GRIGLIA DI VALUTAZIONE DEL DIPARTIMENTO
CRITERI DI VALUTAZIONE DELLA PROVA SCRITTA
Voto
1-2
3-4
Livelli
Risoluzione errata o inesistente. Gravi errori sia concettuali che operativi.
Assolut.
Insufficiente
Risoluzione quasi completa con procedimento parzialmente corretto e calcoli algebrici
Insufficiente
Sufficiente
10
non sempre esatti o non del tutto ultimati.
Risoluzione quasi completa, procedimento corretto. Calcoli algebrici non del tutto ultimati
6
8-9
Risoluzione appena accennata con errori concettuali e calcoli algebrici errati.
Risoluzione con procedimento non sempre corretto e calcoli algebrici con gravi errori e/o
Gravem.
Insufficiente non del tutto ultimati.
5
7
Descrittori
e/o con errori non gravi.
Discreto
Risoluzione completa, procedimento corretto. Alcuni errori di calcolo non gravi.
Buono /
Ottimo
Risoluzione completa, procedimento corretto e calcoli ultimati.
Eccellente
Risoluzione completa, sintetica e precisa con utilizzo delle tecniche più adeguate.
CRITERI DI VALUTAZIONE DELLA PROVA ORALE
Descrittori
Voto
1-2
Livelli
Assolut.
Insufficiente
Livello di conoscenze
Livello di abilità (cognitive e pratiche)
Non conosce nemmeno semplici argomenti
essenziali.
Non è in grado di eseguire nemmeno compiti semplici
Non conosce il lessico della disciplina
3-4
Gravem.
Insufficiente
Ridotte e scorrette conoscenze degli argomenti di
base; nozioni confuse del lessico proprio della
disciplina
Non è in grado di portare a termine compiti e risolvere
problemi
5
Insufficiente
Conoscenze parziali e superficiali; nozione inesatta
del lessico specifico
Utilizza in modo superficiale le proprie conoscenze e
abilità metodologiche, strumentali
6
Sufficiente
Conoscenze degli elementi essenziali della
disciplina; nozione consapevole del linguaggio
specifico
Utilizza le proprie conoscenze/abilità metodologiche
in modo sostanzialmente corretto, con qualche errore
e imprecisione
7
Discreto
Complete con qualche imprecisione; discreta
padronanza del lessico della disciplina
Utilizza in modo corretto le conoscenze/abilità
metodologiche
8
Buono
Conoscenze complete e corrette, ma non sempre
approfondite criticamente; nozione corretta e
appropriata del linguaggio specifico
Applica le conoscenze/abilità metodologiche in modo
corretto nella soluzione di esercizi più articolati
Ottimo
Conoscenze corrette e complete; nozione corretta,
appropriata ed articolata del linguaggio specifico
Applica le conoscenze/abilità metodologiche in modo
corretto e articolato nella soluzione di esercizi
complessi
9
10
Eccellente
Conoscenze approfondite, nozione corretta,
appropriata, ampia ed efficace del linguaggio
specifico
Applica le conoscenze/abilità metodologiche in modo
approfondito, originale e pertinente
Osasco, 10 Ottobre 2016
I docenti di Matematica
prof. KONIG Bettina
prof. VIGNOTTI Margherita Maria