Rendiconto Scientifico dell'attività della Scuola Matematica Interuniversitaria per il 2006 1 - Elenco dei Corsi estivi tenuti nell'estate del 2006 2 - Partecipanti al Corso Estivo di Matematica - Perugia (9 corsi) 3 - Partecipanti al Corso Estivo di Matematica - Cortona (4 corsi) 4 - Elenco dei partecipanti ai singoli Corsi - Perugia 5 - Programmi dei Corsi estivi di Perugia e Cortona 2006 1 Rendiconto scientifico dell'attività della SMI per il 2006 Nell'estate 2006 la Scuola Matematica Interuniversitaria, con la collaborazione della Scuola Normale Superiore di Pisa e del Dipartimento di Matematica dell'Università di Perugia, ha organizzato corsi di base per laureandi e giovani laureati nella sede di Perugia e corsi più avanzati, di avviamento alla ricerca a Cortona. 1 - ELENCO DEI CORSI ESTIVI TENUTI NELL'ESTATE DEL 2006 PERUGIA: (30 luglio –2 settembre) Insegnamenti - Algebra Alberto Facchini, Univ. Padova - Analisi Complessa Edgar Lee Stout, Univ. Washington Seattle. - Analisi Funzionale Eric T. Sawyer, McMaster Univ. - Analisi Numerica Christian Lubich, Univ. Tuebingen -Equazioni differenziali della Fisica Matematica Guido Sweers, TU Delft - Geometria Algebrica Marco Andreatta, Univ. Trento - Geometria Differenziale Gudlaugur Thorbergsson, Univ. Koeln - Probabilità Giovanni Pistone, Politecnico Torino - Teoria dei Modelli Zachary Scott, East Carolina Univ. CORTONA I:2 – 14 luglio 2006 - Syzygies, Hilbert functions generic initial ideals : Aldo Conca, Univ. Genova Juan C. Migliore, Univ. Notre Dame-Indiana CORTONA II: 2 – 23 luglio 2006 - A Geometrial Approach to Free Boundary Problems : Luis A. Caffarelli, Univ. Texas Sandro Salsa, Politecnico Milano CORTONA III:23 luglio – 12 agosto 2006 - Mathematical Finance Wolfgang Runggaldier, Univ. Padova Uwe Schmock, Wien Univ. Technology CORTONA IV:30 luglio – 19 agosto 2006 - Morse Theory Application to Diferential Geometry and onedimensional variational Problems : Francesco Mercuri, Univ.Campinas, Paolo Piccione, Univ.Camerino e Univ. San Paolo 2 2 – PARTECIPANTI AL CORSO ESTIVO DI MATEMATICA – PERUGIA (9 corsi) July 30 – September 2, 2006 Studenti Italiani Domande: Studenti ammessi: Partecipanti effettivi: 110 102 81 Studenti stranieri Domande: 75 Studenti ammessi: 38 Partecipanti effettivi:31 3 –PARTECIPANTI AL CORSO ESTIVO DI MATEMATICA – CORTONA (4 CORSI) 3a) - CORTONA: 2 luglio – 14 luglio, 2006 Elenco dei partecipanti ai singoli corsi - Syzygies, Hilbert functions generic initial ideals Partecipanti Italiani Domande : 10 Studenti ammessi: 9 Partecipanti effettivi: 8 BENEDETTI Beatrice BERTELLA Valentina GRIECO Elena GUERRINI Eleonora LA BARBIERA Monica MALASPINA Francesco SOMONETTI Ilaria SORRENTI Loredana Perugia Genova L’Aquila Pisa Messina Torino Pisa Messina 3 Partecipanti Stranieri Domande : Studenti ammessi : Partecipanti effettivi : 13 13 11 CIMPOEAS Mircea CONSTANTINESCU Alexandru COOPER Susan Marie KAMPF Gesa OLLER MARCEN Antonio M. OSTAFE Lavinia SECELEANU Alexandra SOGER Christof STAMATE Dumitru STOKES Erik WIBMER Michael Bucharest Bucharest Queen’s (Canada) Osnabruck Zaragoza Bucharest Bucharest Osnabruck Bucharest entucky Innsbruck 3b) – CORTONA: 2 luglio – 22 luglio A Geometrial Approach to Free Boundary Problems Studenti Italiani Domande : Studenti ammessi: Partecipanti effettivi: 14 14 13 Elenco dei partecipanti ai singoli corsi ANTONANGELI Giorgio ANTONELLI Paolo ARGIOLAS Roberto AROSIO Leandro CASTELPIETRA Marco CECCHINI Simone CESERI Maurizio CIRAOLO Giulio DI NARDO Rosaria GAVITONE Nunzia NORIS Benedetta PATRIZI Stefania PERROTTA Adamaria Roma La Sapienza L’Aquila Cagliari Pisa Roma To Vergata Firenze Firenze Firenze Napoli Napoli Milano Bicocca Perugia Napoli 4 Studenti stranieri Domande: Studenti ammessi: Partecipanti effettivi: 14 14 12 ARAMA Danut CIOMAGA Adina G. GRIGORIU Andreea G. HILLERMAA Kadri HITZAZIS Iasonas IBRAHIM Hassan MARTINEZ Sandra MILBERS Zoja OLECH Michal PAVLICEK Libor SYLWESTRZAK Ewa VARVARUCA Eugen Al. I. Cuza Al. I. Cuza Al. I. Cuza Tartu Patras Liban Buenos Aires Koeln Wroclaw Praga Zielona Gora Al. I. Cuza 3c) – CORTONA: 23 luglio – 12 agosto 2006 Mathematical Finance Studenti Italiani Domande : Studenti ammessi : Partecipanti effettivi: 18 18 16 Elenco dei partecipanti ai singoli corsi ACCIAIO Beatrice BLASI Francesco D’AMICO Guglielmo D’IPPOLITI Fernanda D’URZO Eleonora FEDELE Mariagrazia FEDERICO Salvatore FERRETTI Camilla GIULIETTI Paolo GOBBI Fabio LOMBARDI Luana MASTROLEO Marcello MERCURI Lorenzo PREZIOSO Valentina Perugia Roma La Sapienza Chieti L’Aquila Perugia Bari Pisa Firenze Pisa Firenze L’Aquila Perugia Ancona L’Aquila 5 RUSSO Emilio VALENTE Carla Calabria L’Aquila Studenti stranieri Domande : Studenti ammessi: Partecipanti effettivi: 14 13 11 DENIZ Asli DENGLER Barbara GEVEILERS Vjaceslavs HUNT Julien MAKAR Nadyia RAFLER Mathias RENZ Norbert VAJDA Istvan VANDAELE Nele ZAKHAROVA Anastasia XU Ling Izmir Institute Technology Vienna Hamburg Catholique de Louvaine Lviv Postdam Ulm Corvinus Budapest Gent Mosca Leipzig 3d) – CORTONA: 30 luglio – 19 agosto 2006 Morse Theory, Application to Differential Geometry and One-dimensional variational Problems Studenti Italiani Domande: Studenti ammessi: Partecipanti effettivi: 7 7 7 Elenco dei partecipanti ai singoli corsi DE LEO Barbara GAZZINI Marita MACIOCCO Giovanni RINALDELLI Mauro ROSATI Lilia SANTI Andrea SICILIANO Gaetano Lecce Milano Cagliari Firenze Firenze Firenze Bari 6 Studenti stranieri Domande: Studenti ammessi: Partecipanti effettivi: 6 6 4 ABARDIA BOCHACA Judit BALMUS Adina CEBANU Radu POCOVNICU Oana Autonoma Barcelona Al. I. Cuza Bucharest Al. I. Cuza 4 - ELENCO DEI PARTECIPANTI DEI SINGOLI CORSI DI PERUGIA Algebra – (27) Studenti Italiani BENEDETTI Bruno BOVENZI Michele CASPANI Luigi CIGOLI Alan Stefano DI MARIA Giovanni FINOCCHIARO Carmelo Antonio GALETTO Federico GENTILE Tommaso IMPERATORE Diana MESSINA Simona MORINI Francesco POVERO Masismiliano RAGUSA Giorgio REDUZZI Davide TARASCA Nicola TEDESCO Giovanna TERRAGNI Tommaso VENEZIANO Francesco Genova Napoli Como Insuria Milano Napoli Catania Torino Calabria Salerno Catania Messina Torino Politecnico Catania Milano Roma Tor Vergata Napoli Milano Pisa Studenti stranieri COPIL Vlad Alexandru CRONIN Anthony DEMIRCI Yilmaz Mehmet FERAGEN Aasa LICHIARDOPOL Elena-Raluca PETRISAN Daniela-Luana PORUMBEL Daniel Cosmin TOP Serpil WALTON Chelsea Bucharest National Univ. Ireland Izmir Inst. Helsinki Bucharest Bucharest Bucharest Izmir Inst. Michigan State Univ. 7 Analisi Complessa – (22) Studenti Italiani ARLOTTO Alessandro BOCCIA Serena BOCHICCHIO Ivana CERREIA VIOGLIO Simone GALETTO Federico GRANDI Stefania MAININI Edoardo PANICCIA Irene Torino Salerno Salerno Milano Bocconi Torino Bologna Milano Politecnico Roma La Sapienza Studenti stranieri BLAGA Camelia-Elena BLANCO Ivan BLASZKE Malgorzata CAGATAY Filiz COPIL Vlad-Alexandru CRONIN Anthony DUMITRU Dan LICHIARDOPOL Elena-Raluca MAINKA Ewelina NOVIKOVA Anna PUMPERLA Max RAICU Claudiu Cristian TACHE Alexandru-Petre TYC Katarzyna Bucharest Complutense Madrid Silesian Izmir Inst. Bucharest National Univ. Ireland Bucharest Bucharest Silesian Voronezh Kaiserslautern Bucharest Bucharest Silesian Analisi Funzionale - (16) Studenti Italiani BOCCIA Serena CERREIA VIOGLIO Simone CHIEPPA Loredana DE FUSCO Rossella DI MICHELE Federica MAININI Edoardo MERCURI Carlo PANICCIA Irene ROSSARO Pier Cristoforo SELVITELLA Alessandro TAVERNISE Marianna Salerno Milano Bocconi Bari Napoli L’Aquila Milano Politecnico Milano Roma La Sapienza Torino Politecnico Milano Calabria 8 Studenti stranieri DUMITRU Dan NESIC Svetozar REMUS Radu TACHE Alexandru-Petre TANASE Raluca Bucharest Belgrado Bucharest Bucharest Bucharest Analisi Numerica - (17) Studenti Italiani BERNARDI Mauro CHIEPPA Loredana DE ANGELIS Guido FELACO Elisabetta FLERES Mirko GAETANO Raffaele GRANDI Stefania LABITA Marzia TAVERNISE Marianna UBERTINI Filippo Venezia Bari Perugia L’Aquila Bologna Napoli Bologna Como Insubria Calabria Perugia Studenti stranieri CARDENAS PRIETO Ernesto Adolfo DE KORT Johan Peter GALAN Ioana-Catalina GOUIN Cindy NOVIKOVA Anna PRYER Tristan SAVA Ecaterina Externado Colombia Delft Al.I. Cuza Debureaux Voronezh Sussex Al.I. Cuza Equazioni Differenziali della Fisica Matematica – (17) Studenti Italiani BOCHICCHIO Ivana CAVALETTI Fabio DE ANGELIS Guido DI MICHELE Federica FELACO Elisabetta MARI Luciano MERCURI Carlo SELVITELLA Alessandro UBERTINI Filippo Salerno Roma La Sapienza Perugia L’Aquila L’Aquila Milano Milano Milano Perugia 9 Studenti stranieri BEREZOVSKA Ganna CAGATAY Filiz DE KORT Johan Peter GOUIN Cindy NESIC Svetozar PILARCZYC Dominika PRYER Tristan TACHE Alexandru-Petre Kyiv National Izmir Inst. Delft Duberaux Belgrado Wroclaw Sussex Bucharest Geometria Algebrica - (27) Studenti Italiani CASPANI Luigi CAVALLETTI Fabio CHIECCHIO Alberto GENTILE Maria GENTILE Tommaso IMPERATORE Diana MAGGIOLO Stefano POMA Flavia POVERO Massimiliano TARASCA Nicola TERRAGNI Tommaso VENEZIANO Francesco VERONELLI Giona VISCO COMANDINI Filippo Como Insuria Roma La Sapienza Torino Napoli Calabria Salerno Ferrara Pisa Torino Politecnico Roma Tor Vergata Milano Pisa Como Insubria Roma La Sapienza Studenti stranieri BLANCO Ivan DE BALLE PIGEM Borja DEMIRCI Yilamz Mehmet FERAGEN Aasa FLUCH Martin PETRISAN Daniela Luana PUMPERLA Max RAICU Claudiu Cristian REMUS Radu TANASE Raluca TOP Serpil TYC Katarzyna WALTON Chelsea Complutense Madrid Catalogna Izmir Inst. Helsinki Ruprecht-Karls Bucharest Kaiserslautern Bucharest Bucharest Bucharest Izmir Inst. Silesian Michigan State 10 Geometria Differenziale – (10) Studenti Italiani BOCHICCHIO Ivana FLERES Mirko GENTILE Maria MAGGIOLO Stefano MARI Luciano POMA Flavia ROSSARO Pier Cristoforo VERONELLI Giona VISCO COMANDINI Filippo Salerno Bologna Napoli Ferrara Milano Pisa Torino Politecnico Como Insubria Roma La Sapienza Studenti stranieri PILARCZYK Dominika Wroclaw Probabilità – (10) Studenti Italiani ARLOTTO Alessandro BERNARDI Mauro GAETANO Raffaele LABITA Marzia Torino Venezia Napoli Como Insubria Studenti stranieri BEREZOVSKA Ganna BLAGA Camelia-Elena CARDENAS PRIETO Ernesto Adolfo FLUCH Martin GALAN Ioana-Catalina SAVA Ecaterina Kyiv National Bucharest Externado Colombia Ruprecht Karls Al. I. Cuza Al. I. Cuza Teoria dei Modelli – (15) Studenti Italiani BENEDETTI Bruno BOVENZI Michele CIGOLI Alan Stefano DE FUSCO Rossella DI MARIA Giovanni FINOCCHIARO Carmelo Antonio MESSINA Simona MORINI Francesco RAGUSA Giorgio REDUZZI Davide TEDESCO Giovanna Genova Napoli Milano Napoli Napoli Catania Catania Messina Catania Milano Napoli 11 Studenti Stranieri BLASZKE Malgorzata DE BALLE PIGEM Borja MAINKA Ewelina PORUMBEL Daniel Cosmin Silesian Catalogna Silesian Bucharest 5 - PROGRAMMI DEI CORSI DI PERUGIA E CORTONA 12 Programmi Corso Estivo Perugia : 30 luglio agosto-2 settembre 2006 ALGEBRA Docente: Prof. Alberto Facchini, Univ. Padova Course contents Rings and ring homomorpisms. Simple rings, division rings. Modules and module homomorphisms. Direct sums, quotient modules. Isomorphism theorems. Cyclic modules. Zorn's lemma. Exact sequences. Maximal submodules. Free modules, IBN rings. Projective modules and their properties. Group rings. Simple modules, semisimple modules. Composition series. Jordan-H\"older theorem. Artinian/noetherian modules and rings. Semisimple artinian rings. Schur's lemma. The theorem of Artin-Wedderburn. Simple artinian rings. Faithful modules, primitive rings, Chevalley-Jacobson theorem. Group representations. Maschke's theorem. Hopkins-Levitzki's theorem. Jacobson radical. Hereditary rings. Dedekind domains. Local rings. Injective modules. Baer's criterion. Every module can be embedded in an injective module. Essential extensions. Lezioni in Inglese Prerequisites: The basic definitions and the first elements of the theory of groups, rings, modules, and linear algebra. Any student of Mathematics at the University, after three years of study, should know them. Textbook: Donald S.~Passman, ``A Course in Ring Theory'', AMS Chelsea Publishing, 2004. ANALISI COMPLESSA Docente: Prof. Edgar Lee Stout, Univ. of Washington Seattle, Washington Programma: 1. The arithmetic and geometry of the complex plane. 2. Complex differentiation and the Cauchy-Riemann equations. 3. Elementary functions. Power series. 4. Complex integration. Cauchy's Theorem-the simplest case. 5. Elementary properties of holomorphic functions. 6. Infinite Products. The Blaschke condition. 7. More general versions of Cauchy's Theorem. 8. Residue theory and the evaluation of real integrals. 9. Conformal mapping. The automorphisms of the disc, the plane and the sphere. Examples of mappings by elementary functions. 10. Normal families. 11. The Riemann Mapping Theorem. 12. Runge's Theorem. Applications. Lezioni in Inglese Prerequisiti: Elementary analysis at the level of Rudin's,Principals of Mathematical Analysis. Testo: John B. Conway Functions of one Complex Variable I, Springer-Verlag ANALISI FUNZIONALE Course contents Part I of the Text - especially chapters 2, 3, 4 and 5 – including Banach-Steinhaus theorem, open mapping theorem, closed graph theorem Hahn-Banach theorem, Banach-Alaoglu theorem, KreinMilman theorem, holomorphic functions. Duality, compact operators Various applications to closed subspace of $L^p$ spaces, range of a vector valued measure, Bishop's theorem, interpolation theorems, fixed point theorems, Haar measure, and complemented subspaces. Time permitting, brief introductions to distributions and partial differential equations (Part II) and spectral theory of Banach algebras (Part III) will be given. Lectures in English Prerequisites: Lebesgue integration, completeness of $L^p$ spaces, elementary properties of holomorphic functions. A reference for the prerequisites topics is chapters 2, 3 and 10 of "Real and Complex Analysis" by Walter Rudin, McGraw Hill, Inc. Textbook: "Functional Analysis" by Walter Rudin, McGraw Hill, Inc. 1991 ANALISI NUMERICA Docente: Prof. Christian Lubich, Univ. Tuebingen Course contents The course will introduce into basic techniques and methods of Numerical Analysis. It will cover the following topics: 1. Interpolation and approximation (Polynomial interpolation by Newton's formula, Errors in polynomial interpolation, Chebyshev interpolation, spline interpolation, Numerical differentiation 2. Numerical integration (Quadrature formulas, order and error, Gaussian quadrature, adaptive quadrature) 3. Numerical solution of ordinary differential equations (Basics, Runge-Kutta methods, extrapolation methods, multistep methods) Lezioni in Inglese Testo : W. Gautschi, Numerical Analysis: An Introduction, Birkhaeuser 1997. EQUAZIONI DIFFERENZIALI DELLA FISICA MATEMATICA Docente : Prof. Guido Sweers, Universitaett zu Koeln and Delft University of Technology Initial programme: 1. From models to differential equations - Laundry on a line: a linear and a nonlinear model - Flow through area and more 2d - Problems involving time: Wave equation, Heat equation - Differential equations from calculus of variations - Mathematical solutions and `real life' 2. Spaces, Traces and Imbeddings - Function spaces: Hoelder spaces, Sobolev spaces - Restricting and extending, traces and corresponding Sobolev spaces - Inequalities by Gagliardo, Nirenberg, Sobolev and Morrey 3. Some new and old solution methods I - Direct methods in the calculus of variations - Solutions in flavours - Characteristics and local solutions by Cauchy-Kowalevski: 4. Some old and new solution methods II - Special domains and almost explicit formula - Weak solutions by Lax-Milgram - The wave equation in 3 and 2 space dimensions 5. Some classics for a unique solution - Energy methods - Maximum principles Lezioni in Inglese Prerequisites: Analysis, Ordinary Differential Equations, and preferably some elementary knowledge of Functional Analysis or Partial Differential Equations Testo: Lawrence C. Evans, Partial differential equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998. GEOMETRIA ALGEBRICA Docente: Prof. Marco Andreatta, Univ. Trento Course contents The course will introduce into the study of Riemann surfaces (Rs) and algebraic curves. The prerequisites are some basic definitions of general topology and the first elements of the theory of holomorphic functions of one complex variable. 1. Definitions, examples and constructions of Rs. 2. Functions and morphisms between Rs. Differential forms and integration on Rs. 3. Meromorphic functions and divisors on Rs. Morphisms and linear sysitems. 4. Riemann Roch theorem, Serre duality and applications. Lectures in Italian/English Textbook: Rick Miranda, Algebraic Curves and Riemann Surfaces, Am.Math.Soc.GSM vol.5 (1997) GEOMETRIA DIFFERENZIALE Docente: Prof. Gudlaugur Thorbergsson, Univ. Koeln The aim of the course is to give an introduction to basic notions and results of Riemannian Geometry. Program: Differentiable manifolds, Riemannian metrics, covariant derivatives, geodesics, the curvature tensor, first and second variation formulas, Jacobi fields, conjugate points, completeness, the theorem of Hopf-Rinow, the Theorems of Hadamard and Bonnet-Myers Lezioni in Inglese Prerequisites: Good knowledge of Multivariable Calculus and Linear Algebra will be assumed. Some familiarity with the notion of a differentiable manifold will be helpful Testo: Manfredo do Carmo, Birkheuser, 1992, Riemannian Geometry PROBABILITA' Docente: Prof. Giovanni Pistone, Politecnico di Torino The plan is to cover as much as possible of the material contained in the textbook J. Jacod & Ph. Protter, {Probability Essentials} 2nd Ed. Springer, - Elementary probability (Ch. 2--5) - Probability measures and random variables (Ch. 6--10) - Probability distributions on real vector spaces (Ch. 11--16) - Convergences and limit theorems (Ch. 17--21) - Conditional expectation and martingales (Ch. 22--28) The precise choice of topics will depend on the actual interests and background of the students. Much room will be left to examples and exercises. TEORIA DEI MODELLI Docente: Prof. Zachary Robinson, East Carolina University Programma: This is an introduction to model theory with applications to algebra and algebraic geometry. The model theory is developed beginning with first-order languages and structures, theories and models, definability and interpretability. Fundamental general techniques such as model-theoretic compactness, completeness and back-and-forth constructions are introduced. The final segment covers quantifier elimination for algebraically closed and real closed fields. Along the way, applications to algebra and algebraic geometry will be discussed. These include Ax's theorem that injective endomorphisms of complex algebraic varieties are surjective, Artin's solution to Hilbert's 17th Problem, Milnor's Curve Selection Theorem, and cell decomposition for real semi-algebraic sets. Lezioni in Inglese Prerequisiti: A course in abstract algebra (properties of integers, polynomials, groups, rings, fields) and minimal familiarity with logic (propositional calculus, predicate calculus, proof). To gain some familiarity with logic, students with no prior experience might want to first look through a basic logic text such as: the first half of "A Mathematical Introduction to Logic," by Herbert Enderton, or the first quarter of "Mathematical Logic," by Ebbinghaus, Flum and Thomas. Testo : "Model Theory: An Introduction," David Marker, Graduate Texts in Mathematics 217, Springer-Verlag, New York, 2002 (ISBN: 0-387-98760-6). Programmi Corso Estivo Cortona 2 luglio - 15 luglio 2006 Syzygies Hilbert Function and Generic Initial Ideas Docente: Prof. Aldo Conca,Univ. di Genova 1) Introduction to the basic invariants: Hilbert functions, Betti numbers, regularity. 2) Initial ideals and deformations. 3) Monomial ideals, stable ideals, strongly stable ideals, Borel fixed ideals, lex-segments and more generally tau-segments and their Betti numbers 4) Generic initial ideals: existence and main properties, 5) Polarizzation, distraction and gin. 6) Macaulay Theorem, Bigatti-Hullett and Pardue Theorem. 7) Rigidity: Herzog-Hibi-Aramova Theorem and extensions. 8) Froeberg conjcture, Gin of generic complete intersections. Anick's result. 9) Gin-lex 10) Simplical complexes, gin and shifting. 11) Regularity for powers Libri consigliati : - Bruns-Herzog "Cohen-Macaulay rings" Cambridge University Press, 1998. - D.Eisenbud, "Commutative Algebra : with a View Toward Algebraic Geometry" Springer 1999. Docente: Prof. Juan C. Migliore, Univ. Notre Dame, Indiana 1) Introduction (we will split the material ) 2) Deficiency modules 3) Gorenstein ideals and subvarieties 4) Liaison 1 5) Liaison 2 6) Liaison 3 7) Froeburg conjecture (preparation for Conca's talk \#7) 8) Weak Lefschetz property 9) Multiplicity conjectures 10) Fat points 11) Tetrahedral curves Programmi Corso Estivo Cortona 2 luglio - 23 luglio 2006 A Geometrical Approach to Free Boundary Problems Docenti: Prof. Luis Caffarelli, Univ.Texas Austin-Prof. Sandro Salsa, Politecnico Milano Course contents Caffarelli and Salsa will coordinate their lectures to cover simultaneously the following topics: Part I The obastacle problem and flux-discontinuity type free boundary problems (one and two phases). Introductory examples and problematic, the equations involved, variational and supersolution approach. Global optimal regularity of solutions. Regularity and stability of interphases. In the process, we develop the needed tools from geometric PDE: basic properties of solutions of second order elliptic equations in Lipschitz domains, interior and boundary harnack inequalities, monotonicity formulas (about I and 1/2 weeks). Part II Extension of ideas and methods to other problems: twophase parabolic problems (Stefan type), flow in porus media, problems involving fractional laplacians (thin obstacles, Levy process). Textbooks : L.A. Caffarelli, S.Salsa, A geometric approach to free boundary problems, A.M.S. Providence, 2005. The obstacle problem, Lezioni Fermiane, Pisa Programmi Corso Estivo Cortona 23 luglio - 12 agosto 2006 Finanza Matematica Docenti: Prof. Wolfgang J. Runggaldier, Univ. di Padova Program : [1.] Basic structure 1. Term structure of interest rates {\it (lectures and problem-solving sessions and seminars) 2. Hedging of general claims by martingale representation (mainly problem-solving sessions and seminars) [2] Specific structure Term structure of interest rates - Basic concepts and preliminaries; - Martingale models for the short rate and their calibration; Forward rate models {\it (HJM framework)}; - Change of numeraire techniques; - LIBOR and Swap market models Remarks: The basic theory will be presented in a Brownian framework. As the lectures on the general integration theory (Prof. Schmock) progress also settings beyond the Brownian framework will be envisaged. 2. Hedging After a short basic introduction during the lectures, this will be mainly a topic for the problem-solving sessions and seminars. As for the term structure, here too we shall start from a Brownian framework that will then be gradually generalized in line with the general integration theory (Prof. Schmock). Lezioni in Inglese/Italiano Testo : T. Bjoerk, Arbitrage Theory in Continuous Time. Oxford University Press 2004 (2nd edition). Letture consigliate : D.Brigo, F. Mercurio, Interest Rate Models – Theory and Practice. Springer Verlag 2005 (2nd edition). Possible additional material for lectures and problem-solving sessions and relating specific journal articles will be made available on site. Docente: Prof. Uwe Schmock, TU Wien Motivation: Let S denote a stochastic process describing the evolution of the discounted price of an asset, and let H be the process describing the (possibly random) number of these assets at any given time in the investor's portfolio. The gains and losses of this investment strategy H is given by the stochastic integral of H with respect to S. It therefore lies at the heart of modern, continuous-time mathematical finance to clarify, for which investment strategies H and price processes S this stochastic integral is mathematically well defined and what its properties are. Contents: (I) We will follow the approach given in Ph. Protter's textbook, developing the theory of general stochastic integration with respect to semimartingales, which includes the cases of Brownian motion and Lévy processes. Applications of the theory, in particular to the modelling to the stochastic evolution of the term structure of interest rates, will be given in Prof. Runggaldier's part of the course. Ph. Protter's book contains an extensive list of exercises, which can be discussed in the problem-solving sessions. (II) Depending on time and interest of the course participants, (a) credit risk modelling with an emphasis on CreditRisk+ and its extensions, (b) properties of expected shortfall, and (c) allocation of risk capital by expected shortfall will be treated in the seminars. Lecture notes for preparing these seminars are available upon request. Prerequisites: Part (I) of the course requires familiarity with measure theoretic probability theory and basic results about martingales, because these will be used without proofs. The textbook by D. Williams and Chapter 2 of the textbook by S. Ethier and T. Kurtz are certainly a good source. Lezioni in Inglese Literature: - Philip E. Protter: Stochastic Integration and Differential Equations, (2nd edition), Applications of Mathematics: Stochastic Modelling and Applied Probability, Vol. 21, 2004, Springer-Verlag, ISBN 3-540-00313-4. - David Williams: Probability with Martingales, Cambridge Mathematical Textbooks, 1991, Cambridge University Press, ISBN 0-521-40605-6 - Stewart N. Ethier and Thomas G. Kurtz: Markov Processes, Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics, 1986, John Wiley \& Sons, ISBN 0-47108186-8 - Uwe Schmock: Modelling Dependent Credit Risks with Extensions of CreditRisk+, An Implementation-Orientated Presentation, Lecture Notes, 2006 (latest version available upon request, [email protected]). Programmi Corso Estivo Cortona 30 luglio - 19 agosto 2006 Morse theory, with applications to Differential Geometry Docenti: Prof. Francesco Mercuri (Unicamp) e Prof. Paolo Piccione (USP) Short program of the course First week: - Review of Algebraic Topology. - Ljusternik and Schnirelman theory. - Classical Morse Theory. Second week: - Applications of the finite dimensional Morse Theory to submanifold theory: Generalized Gauss-Bonnet theorem, Chern-Lashof theorem, low codimensional submanifolds of positive curvature in $R^N$, hyperplane section theorem. - The Morse--Witten complex (in compact manifolds) and its homology. Dynamical formulation of the Morse inequalities. - Morse--Bott theory (critical submanifolds). Third week: - Some applications to Riemannian Geometry: The pinching Theorem, periodic geodesics, the Yamabe problem. - A strongly indefinite variational problem: Geodesics in Lorentzian manifolds, spectral flow, Maslov index. Basic bibliography: 1. Mercuri-Piccione-Tausk: {\it Morse Theory}, Published by I.M.P.A., Brazil, 2003. 2. Milnor: {\it Morse theory}, Annals of Math. Study, vol 51, Princeton University Press, 1963. 3. Palais-Terng: {\it Critical Point Theory and Submanifold Geometry}, Lectures Notes in Math., vol. 1353, Springer-Verlag, 1988.