Teoria dei giochi e giochi evolutivi Chiara Mocenni Teoria dei giochi • • Interdipendenza strategica • i giocatori sono soggetti decisionali autonomi con obiettivi talvolta contrapposti • il guadagno di ognuno dipende dalle scelte proprie e da quelle degli altri Giocatori razionali • obiettivi definiti • tutti i giocatori sono ugualmente intelligenti Elementi del gioco • Un insieme di giocatori • Per ogni giocatore, un insieme di alternative • Per ogni giocatore, un ordinamento delle preferenze nell’insieme delle alternative Chi ha introdotto la TdG • Primi studi nell’ambito della teoria dell’oligopolio: Cournot (1838) e Bertrand (1883) • • Von Neumann-Morgenstern (1944): la teoria dei giochi fornisce una teoria generale per analizzare molte questioni economiche • • Nash (1950) introduce l’equilibrio omonimo Le applicazioni classiche • Le applicazioni hanno interessato molti campi della disciplina economica • la teoria dell’oligopolio • la microeconomia • la macroeconomia in economie chiuse e aperte • la politica economica Un esempio classico: il dilemma del prigioniero • Due prigionieri vengono interrogati separatamente dalla polizia perché sospettati di aver commesso un reato insieme • Poiché mancano le prove per incriminarli, la polizia cerca di indurre almeno uno dei due a confessare in cambio di una riduzione di pena • Se uno solo confessa, egli sarà liberato immediatamente mentre il complice dovrà scontare una pesante condanna • Se entrambi confessano, la pena sarà ridotta per entrambi • Se nessuno dei due confessa, in mancanza di prove, dovranno essere liberati alla scadenza dei termini di carcerazione preventiva La bi-matrice Giocatore 2 G2 Confessa Non confessa Confessa 3,3 0,4 Non confessa 4,0 1,1 Giocatore 1 G1 La battaglia dei sessi • Marito e moglie decidono di uscire la domenica • Vogliono stare insieme • Ma… il marito preferisce andare allo stadio, mentre la moglie preferisce andare al cinema La battaglia dei sessi: regole Scenario 1 • Ciascuno di loro assegna un punteggio +2 se riesce a stare insieme all’altro • Ciascuno di loro assegna un punteggio +1 se riesce ad andare nel luogo preferito: il marito allo stadio e la moglie al cinema La bi-matrice Moglie Stadio Cinema 2,3 0,0 Stadio 1,1 3,2 Marito Cinema La battaglia dei sessi: regole Scenario 2 • Ciascuno di loro assegna un punteggio +1 se riesce a stare insieme all’altro • Ciascuno di loro assegna un punteggio +2 se riesce ad andare nel luogo preferito: il marito allo stadio e la moglie al cinema La bi-matrice Moglie Stadio Cinema 1,3 0,0 Stadio 2,2 3,1 Marito Cinema LA COPPIA SCOPPIA! Il gioco Stug - Hunt • Due cacciatori vanno a caccia di cervi. Per avere piu’ probabilita’ di prenderlo devono rimanere il piu’ possibile fermi in un punto e cooperare per la cattura • L’alternativa facile e’ quella di cacciare una lepre. Per far questo non c’e’ bisogno di cooperare, ma il cacciatore che caccia la lepre non potra’ aiutare l’altro nella cattura del cervo La bi-matrice Cacciatore 1 Cacciatore 2 Stag Hunt Stag 2,3 0,1 Hunt 1,0 3,2 Il gioco del coniglio o chicken game • Due amici decidono di fare una gara di velocità e coraggio • Organizzano una gara di macchine in una strada che termina in un burrone (Gioventù bruciata) • Le strategie a disposizione sono FERMARSI e NON FERMARSI • Perde il primo che si ferma La bi-matrice Giocatore 1 Giocatore 2 Non fermarsi Fermarsi Non fermarsi -10,-10 1 , -1 Fermarsi -1 , 1 0,0 Il gioco Falchi e Colombe • I giocatori sono due animali che si contendono una preda • Essi possono comportarsi come Falchi (aggressivi) o come Colombe (remissivi) • Nel caso in cui uno dei due si comporti come falco e l’altro come colomba, il primo avrà la meglio (guadagno v) e lascerà all’altro le briciole (guadagno 0) • Nel caso in cui entrambi si comportino da falco, avranno delle perdite dovute al combattimento, dunque il guadagno di ciascuno di loro sara’ (v-c)/2, con c>v • Nel caso in cui entrambi si comportino da colombe, non avranno perdite e semplicemente si divideranno la vincita a metà (guadagno v/2) La bi-matrice Animale 1 Animale 2 Falco Colomba Falco (v-c)/2,(v-c)/2 vv , 00 Colomba 00 , vv v/2 , v/2 La morra cinese La bi-matrice Giocatore 1 Giocatore 2 Sasso Forbice Carta Sasso 0,0 1 , -1 -1 , 1 Forbice -1 , 1 0,0 1 , -1 Carta 1 , -1 -1 , 1 0,0 La bi-matrice Giocatore 1 Giocatore 2 Sasso Forbice Carta Sasso 0,0 1 , -1 -1 , 1 Forbice -1 , 1 0,0 1 , -1 Carta 1 , -1 -1 , 1 0,0 NESSUN EQUILIBRIO !