COMPITI PER LE VACA ZE A.S. 2011-2012 Gli esercizi assegnati

COMPITI PER LE VACAZE A.S. 2011-2012
Gli esercizi assegnati ripercorrono il programma svolto e devono servire da guida nella revisione di tutto il lavoro fatto durante l’anno.
Sono consigliati per affrontare con maggior preparazione il prossimo anno scolastico all’inizio del quale verrà effettuata una prova di ingresso .
ARGOMETO
Insiemi numerici
• l'insieme N,operazioni in N e loro proprietà
• l'insieme Z,operazioni in Z e loro proprietà
• l'insieme Q,operazioni in Q e loro proprietà
• potenze ad esponente in N e Z e base in Q e loro proprietà
Logica
• proposizioni semplici e composte
• operazioni sulle proposizioni: la negazione, la disgiunzione logica inclusiva ed esclusiva, la congiunzione,
l'implicazione e la bi implicazione
• Condizione necessaria e sufficiente
• tavole di verità
• enunciati aperti
• i quantificatori
Insiemi
• rappresentazione degli insiemi: per elencazione, per proprietà caratteristica, mediante diagrammi di Venn
• sottoinsiemi, insieme delle parti e sua cardinalità in relazione alla cardinalità dell'insieme di partenza
• operazioni tra insiemi (intersezione, unione, differenza) e loro proprietà
• insieme complementare ed insieme universo
• prodotto cartesiano di insiemi
Relazioni
• relazioni tra insiemi, rappresentazione di relazioni per elencazione delle coppie (grafo), mediante diagramma sagittale,
mediante diagramma cartesiano, mediante enunciato aperto (xRy ↔ P(x,y) )
• dominio e codominio (insieme di definizione e insieme immagine )
• relazioni inverse
ESERCIZI
• Quaderno di recupero
“Algebra 1”
Tutti le schede e gli
esercizi da pag. 1 a pag.
15
• Sul testo in adozione
Pag. 58, pag. 127 prove
di autoverifica
• Quaderno di recupero
“Algebra 1”
Tutti le schede e gli
esercizi da pag. 16 a pag.
24
• Sul testo in adozione
Pag. 200 prova di
autoverifica
Quaderno di recupero
“Algebra 1”
Tutti le schede e gli
esercizi da pag. 25 a pag.
30
•
Relazioni in un insieme e proprietà (riflessiva,simmetrica,transitiva, antiriflessiva, antisimmetrica); relazioni di
equivalenza ed insieme quoziente e relazioni d’ordine.
Funzioni
• funzioni tra insiemi e proprietà: funzioni iniettive, suriettive, biunivoche, invertibili
• composizione di funzioni
• funzioni numeriche e loro espressione
• Sul testo in adozione
Pag. 237 prova di
autoverifica
• sul dischetto in
“Algebra 1”,
“complementi” e
infine
“Classificazione di
funzioni” pag. 4 dal 4
al 18
• Quaderno di recupero
• Calcolo letterale
“Algebra 1”
• Monomi e operazioni con essi
Tutti
le schede e gli
• polinomi, somma differenza e prodotto e divisione di polinomi
• prodotti notevoli: quadrato e cubo di un binomio, quadrato di un polinomio, differenza di quadrati, somma e differenza esercizi da pag. 31 a pag.
43
di cubi, potenze di un binomio
• Sul testo in adozione
• Divisione di polinomi e regola di Ruffini
Pag. 291,339,364 prove
di autoverifica
• scomposizione di polinomi: raccoglimento totale e parziale; differenza di quadrati,somma e differenza di cubi,
• Quaderno di recupero
riconoscimento di prodotti notevoli trinomio di secondo grado ax²+ bx + c
“Algebra 1”
Tutti
le schede e gli
• Scomposizione di un polinomio con la regola di Ruffini
esercizi da pag. 44 a pag.
• M.C.D. e m.c.m di polinomi
55
• frazioni algebriche, insieme di definizione di una frazione algebrica, semplificazione di frazioni algebriche e
• Sul testo in adozione
operazioni con esse
Pag. 410,446 prove di
autoverifica
Equazioni di I grado intere in una incognita
• Quaderno di recupero
“Algebra 1”
• Identità, equazioni proprie, equazioni impossibili, equazioni indeterminate insieme ambiente, insieme delle soluzioni
(come insieme di verità dell'enunciato aperto) e relazioni tra essi
Tutti le schede e gli
esercizi da pag. 56 a pag.
• equazioni equivalenti, principi di equivalenza e loro conseguenze
66 (fino alla n. 13)
• verifica di una equazione
• Sul testo in adozione
• risoluzione di equazioni di primo grado intere
• risoluzione di equazioni numeriche di grado superiore mediante scomposizione del polinomio a primo membro in Pag. 493 dalla 229 alla
266 (quelle non svolte
fattori di primo grado.
durante l’anno)
• Risoluzione di equazioni fratte
•
•
Risoluzione di problemi mediante equazioni
Geometria
• Piano euclideo e sistema ipotetico deduttivo (inquadramento storico)
• Assiomi e enti geometrici primitivi
• figure concave e convesse, intersezione di figure convesse
• sottoinsiemi della retta: semirette segmenti,segmenti consecutivi e adiacenti
• sottoinsiemi del piano: semipiani, angoli, angoli convessi e concavi, angolo piatto, giro, nullo; angoli consecutivi e
adiacenti;angoli opposti al vertice
• Congruenza: congruenza tra segmenti, congruenza tra angoli, lunghezza di un segmento e ampiezza di un angolo,
misura di una lunghezza e di una ampiezza, somma di lunghezze, disuguaglianze tra lunghezze , somma di ampiezze ,
disuguaglianza tra ampiezze
Quaderno di recupero
“Geometria”
Tutti le schede e gli
esercizi da pag. 1 a pag.
12
•
Prima di svolgere gli esercizi assegnati, ripassa sul libro o sul quaderno di teoria gli argomenti a cui si riferiscono (nel caso ti accorgessi che il
quaderno di teoria non è completo, provvedi a completarlo), rivedi gli esercizi svolti e corretti durante l’anno, in modo da ripercorrere il
programma svolto ed iniziare l’anno senza dubbi o vuoti di memoria
A chi ha il debito si consiglia non solo di procedere come indicato al punto precedente, ma secondo necessità, di svolgere ordinatamente gli
esercizi presentati in ciascun capitolo dal libro in adozione.
Non svolgere frettolosamente gli esercizi…e non copiarli da un compagno: fare esercizio serve a te, per affrontare il nuovo anno scolastico con
basi più solide
BUO LAVORO!
Saba Mainardi