20 test (30 minuti) TEST INTERATTIVI 1 La termodinamica 2 Stati termodinamici e trasformazioni P = 2,4 $ 10 4 Pa , T = 320 K ; P = 2,1 $ 10 4 Pa , V = 0,34 m 3 . 6 V = 2,8 $ 10-1 m 3@ 0,5 QUANTO? Gli stati A e B rappresentati nel diagramma sono relativi a n moli di gas perfetto. Quanto vale il rapporto TB TA fra le temperature dei due stati? 6 2@ 0,4 P (105 Pa) 1 쐌쐌쐌 0,3 0,2 0,1 40 A 30 P (kPa) 0 0 B 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 V (m3) 20 10 0 4 쐌쐌쐌 C 0 1 2 Il diagramma riporta lo stato A di 4,8 moli di gas perfetto a 350 K. Calcola P. 6 3,5 $ 10 4 Pa@ P 3 V (m3) A 2 쐌쐌쐌 3 쐌쐌쐌 QUANTO? Considera il diagramma precedente. Quanto vale il rapporto TB TC ? 6 3@ 0 Inserisci nel diagramma P-V i seguenti stati di 2,5 moli di gas perfetto: 5 ESEMPIO Considera lo stato A di 0,80 moli di gas perfetto rappresentato nel diagramma. Determina la temperatura del gas. Stabilisci se lo stato B appartiene alla stessa isoterma di A. 0,4 V (m3) 0,6 30 A 20 B 10 0 0 482 0,2 쐌쐌쐌 P (kPa) ESERCIZI ESERCIZI 0,05 RISOLUZIONE Dal diagramma si ricavano pressione e volume del gas nei due stati (consideriamo due cifre significative): PA = 2,0 $ 10 4 Pa VA = 0,10 m 3 Calcoliamo TA mediante l’equazione del gas perfetto PV = n RT : TA = PA VA nR 0,10 0,15 V (m3) 0,20 PB = 1,0 $ 10 4 Pa VB = 0,15 m 3 0,25 0,8 Risultato numerico PA = 2,0 $ 10 4 Pa VA = 0,10 m 3 TA = Lo stato B sta sulla stessa isoterma di A solo se TB = TA: TB = ESERCIZI 11 Il primo principio della termodinamica ^ 2,0 $ 10 4 Pah ^ 0,10 m 3h ^ 0,80 molh ^ 8,31 J (mol $ K)h = 3,0 $ 10 2 K = 300 K PB VB nR Risultato numerico PB = 1,0 $ 10 4 Pa VB = 0,15 m 3 TB = ^ 1,0 $ 10 4 Pah ^ 0,15 m 3h ^ 0,80 molh ^ 8,31 J (mol $ K)h = 2,3 $ 10 2 K = 230 K TA ! TB quindi i due stati non appartengono alla stessa isoterma. 6 쐌쐌 쐌 Il punto A nel diagramma P-V corrisponde a uno stato di 160 moli di gas perfetto. Calcola la temperatura del gas nello stato A. Traccia la trasformazione isocora che porta il gas dallo stato A allo stato B con pressione doppia. Traccia la trasformazione isobara che porta il gas dallo stato A allo stato C con volume doppio. È possibile trasformare lo stato B nello stato C mediante una trasformazione isoterma? Mediante una trasformazione isoterma il gas viene portato nello stato B. Calcola PB . Mediante una trasformazione isocora il gas viene portato dallo stato A allo stato C in cui PC = PB . Calcola TC . Il calore specifico dell’elio è 0,75 kcal ^kg $ Kh . Determina il calore fornito al gas nella trasformazione isocora. 6 270 K ; 2,7 $ 10 4 Pa; 7,1 $ 10 2 K ; 1,0 $ 10 2 J @ 6 TA = 300 K ; TB = TC = 600 K @ 4 P (104 Pa) 4 P (105 Pa) 3 3 B C 2 V = costante A 2 1 T = costante A 1 0 0 7 쐌쐌 쐌 0 1 2 3 V (m3) 4 5 A partire dallo stato con P = 6,0 $ 10 4 Pa e V = 0,20 m 3, 4,0 moli di gas perfetto vengono compresse isotermicamente fino a dimezzarne il volume. Calcola la temperatura del gas. Disegna la trasformazione nel piano P-V. 0 1 1,5 2 3 4 V (10-3 m3) 5 6 3 Il lavoro in una trasformazione termodinamica 9 쐌쐌쐌 QUANTO? Considera di voler gonfiare un canotto a 0,2 bar tramite una pompa di volume 4 L. Quanto lavoro è necessario per comprimere fino in fondo lo stantuffo? 6. 80 J@ 6 T = 360 K@ 10 Un gas, che inizialmente è alla pressione di 4,0 atm Lo stato di 18 mmol ^10-3 molh di elio è rappresen쐌쐌쐌 tato dal punto A nel diagramma P-V. Quanto vale la temperatura del gas? 8 쐌쐌쐌 e occupa un volume di 1,5 L, si espande a pressione costante finché il suo volume diventa di 4,5 L. Determina il lavoro compiuto dal gas. 6 1,2 kJ @ 483 11 Un gas è inizialmente alla pressione di 300 kPa e occupa un volume di 15,0 L. È compresso a pressione costante 쐌쐌쐌 finché il volume diventa di 12,5 L. Quanto vale il lavoro compiuto dal gas? 12 6- 750 J@ 쐌쐌쐌 ESEMPIO Un gas inizialmente alla pressione di 400 kPa occupa un volume di 5,0 L. Il gas viene quindi compresso fino a un volume di 3,0 L e a una pressione di 200 kPa. Ipotizza che la trasformazione sia rappresentabile con un segmento. Calcola il lavoro compiuto dal gas. 500 RISOLUZIONE Rappresentiamo la trasformazione in un piano P-V e calcoliamo il lavoro compiuto dal gas come area sottesa dal segmento che la schematizza. L’area totale è la somma delle aree del triangolo azzurro e del rettangolo verde. Il lavoro è dato dalla somma delle aree. A 400 P (kPa) 300 B 200 100 0 0 1 2 2 Risultato numerico Pi = 400 kPa Pf = 200 kPa V i = 5,0 L V f = 3,0 L 4 V (L) 5 6 7 1 ^ 5,0 $ 10-3 m 3 - 3,0 $ 10-3 m 3h $ 2 $^ 400 kPa - 200 kPah = 200 J Area triangolo = Area rettangolo = ^ 5,0 $ 10-3 m 3 - 3,0 $ 10-3 m 3h $ $ 200 kPa = 400 J L tot = 200 J + 400 J = 600 J espande con una trasformazione isobara fino a occupare un volume triplo. Determina il lavoro compiuto dal gas. 6 12 kJ @ 13 Un gas perfetto compie un ciclo ABCA formato 쐌쐌 쐌 dalle trasformazioni indicate nel diagramma P-V. Quanto vale il lavoro compiuto dal gas? E quanto il lavoro fatto sul gas quando il ciclo è percorso in senso opposto? 6 4 kJ ; - 4 kJ@ 120 15 Il volume occupato da 1 mole di gas perfetto è 쐌쐌쐌 B 100 P (kPa) ESERCIZI Princìpi della termodinamica 80 A 60 C 16 Considera le due trasformazioni dell’esercizio pre- 40 쐌쐌쐌 20 0 0 0,1 0,2 0,3 V (m3) 0,4 14 2,0 moli di gas perfetto si trovano a una temperatu- 쐌쐌 쐌 484 1,0 $ 10-3 m 3 a 280 K. Attraverso una trasformazione isocora raggiunge la temperatura di 320 K. Successivamente una trasformazione isobara lo porta a un volume di 1,7 $ 10-3 m 3 . Rappresenta le trasformazioni in un piano P-V. Calcola il lavoro compiuto dal gas. 6 1,9 kJ@ ra di 370 K e occupano un volume Vi . Il gas si cedente invertite. Calcola il lavoro. 6 1,6 kJ@ 17 Considera n moli di gas perfetto che compiono il 쐌쐌쐌 ciclo ABCA mostrato nel diagramma P-V. È noto che TA = 310 K. Quanto vale n? E TC ? 11 Il primo principio della termodinamica Quanto vale il lavoro compiuto dal gas? Indica se nella trasformazione BC il gas cede o acquista calore. 6 3,9 mol ; 7,4 $ 10 2 K ; 6,0 kJ ; cede calore @ 20 Fornisci 400 kcal a un gas che si espande e compie 쐌쐌쐌 800 kJ di lavoro. Determina la variazione di energia interna. 6 0,87 MJ @ 120 A 100 21 L’energia interna di un sistema termodinamico B 쐌쐌쐌 P (kPa) 80 C 60 6- 130 J @ 22 Un proiettile di piombo ha una temperatura di 40 쐌쐌쐌 20 0 aumenta di 400 J a seguito di una somministrazione di calore di 270 J. Quanto vale il lavoro compiuto sul sistema? 0 0,1 0,2 0,3 V (m3) 0,4 0,5 20 °C e si muove alla velocità di 200 m s . Viene fermato da un blocco di legno. Supponi che tutta la variazione di energia riscaldi il proiettile. Qual è la temperatura del proiettile immediatamente dopo l’urto? 6 175 °C @ 23 In un esperimento dimostrativo si lancia vertical- 쐌쐌쐌 4 Il primo principio della termodinamica 18 QUANTO? 쐌쐌쐌 Un sistema compie un lavoro di 3 $ 10 5 J e cede 2 $ 10 5 J di calore. Quanto vale la variazione dell'energia interna del 6- 5 $ 10 5 J@ sistema? 19 Un sistema termodinamico riceve dall’esterno 20 J 쐌쐌쐌 di lavoro e 80 cal di calore. Calcola la variazione della sua energia interna. mente una scatola contenente pallini di piombo fino a una quota di 4,0 m, lasciandola poi cadere al suolo. La temperatura iniziale del piombo è di 20 °C. Dopo 5 lanci si misura la temperatura dei pallini. Ipotizza che non ci siano perdite di calore. A che temperatura sono? 6 22 °C@ 24 In un esperimento tipo quello di Joule, il mulinello è 쐌쐌쐌 azionato da un peso di 4,0 kg che scende a velocità costante per un tratto di 1,5 m. Il sistema contiene 0,60 kg d’acqua. Di quanto aumenta la temperatura dell’acqua? 6 0,35 kJ @ 25 ESEMPIO 6 0,023 °C@ 쐌쐌쐌 Un sistema termodinamico è costituito da un serbatoio contenente 5,0 L d’acqua a 50 °C e posto in contatto termico con una sorgente fredda. Tramite un mulinello si compie sul sistema un lavoro di 30 kJ. Ipotizza che alla fine l’energia interna sia diminuita di 45 kJ. Quanto calore è stato sottratto al sistema? Quale temperatura finale ha raggiunto? RISOLUZIONE Per calcolare il calore sottratto utilizziamo l’equazione del primo principio della termodinamica: TU = Q - L & Q = TU + L Risultato numerico TU = - 45 kJ L = - 30 kJ Q = ^- 45 kJh + ^- 30 kJh = - 75 kJ L’acqua non compie lavoro perché l’effetto della dilazione termica è trascurabile, quindi: Q = TU = m c TT & TT = TU mc 485 ESERCIZI ESERCIZI Princìpi della termodinamica Risultato numerico m = 5,0 L TU = - 45 kJ c = 4,18 k J ^ kg $ Kh Ti = 50 °C TT = ^- 45 kJh ^5,0 kgh ^4,18 k J ^kg $ Khh = - 2,2 °C Tf = D T + Ti = 48 °C 26 Agisci con un mulinello su un sistema termodinamico costituito da 7,0 $ 10-3 m 3 d’acqua compiendo un lavoro 쐌쐌 쐌 di 50 kJ e contemporaneamente fornisci 20 kcal di calore. Calcola la variazione di energia interna del sistema. Di quanto è variata la sua temperatura? 27 ESEMPIO 6 134 kJ ; 4,6 °C @ 쐌쐌쐌 Si vuole variare la temperatura di 1,0 kg d’acqua da 20 °C a 25 °C, nell’ipotesi che non si acquisti e non si perda calore. Calcola il lavoro necessario. In un esperimento reale il lavoro compiuto per produrre questa variazione di temperatura è di 30 kJ. Quanto calore è stato ceduto all’esterno? RISOLUZIONE L’aumento della temperatura corrisponde a un aumento dell’energia interna dell’acqua. Se trascuriamo il lavoro compiuto dalla dilatazione termica si ha: TU = c m TT Nell’ipotesi che l’acqua non scambi calore: TU = - L & L = - c m TT Risultato numerico m = 1,0 kg T T = 5 °C L = -^ 4,18 kJ ^ kg $ °Chh ^ 5 °Ch ^ 1,0 kg h = - 0,02 MJ Nell’ipotesi che l’acqua abbia scambiato calore avremo: TU = Q - L 1 & Q = L 1 + TU Risultato numerico L 1 = - 30 kJ = - 0,030 MJ TU = 0,02 MJ Q = - 0,030 M J + 0,02 M J = - 0,01 M J fatto che non ci siano aumenti di temperatura? 28 Nelle Cascate del Niagara l’acqua cade da una quo- 쐌쐌 쐌 486 ta di 50 m. Considera che tutta l’energia potenziale diventi energia interna dell’acqua. Determina l’aumento di temperatura. Svolgi lo stesso esercizio per le Cascate di Yosemite, dove l’acqua cade da una quota di 740 m e non si osservano aumenti di temperatura. Come si spiega, dal punto di vista energetico, il 6 0,12 °C ; 1,7 °C@ 29 Un pulmino di 4,8 $ 10 3 kg procede su una strada 쐌쐌쐌 rettilinea a velocità costante di 50 km h . Ipotizza che l’energia cinetica si trasformi in calore. Calcola la quantità di calore che si sviluppa a cau6 4,6 $ 10 5 J@ sa della completa frenata del mezzo. mente e occupa un volume di 3,80 L. Che valore ha il lavoro compiuto dal gas? 6 128 J@ 30 Un sistema compie un lavoro pari a 1,7 $ 10 5 J e il 쐌쐌 쐌 suo raffreddamento è ottenuto facendo evaporare circa 0,85 L d’acqua. Trascura gli altri scambi termici. Quanto vale la variazione di energia interna del 6- 2,1 $ 10 6 J@ sistema? 34 Un gas perfetto è inizialmente alla pressione di 쐌쐌쐌 31 La combustione di 1 L di carburante di una barca a 쐌쐌쐌 motore rilascia circa 30 MJ. Contro l’attrito dell’acqua, a una particolare imbarcazione sono necessari 6,8 $ 10 8 J di lavoro per percorrere un miglio. Il suo propulsore consuma 27 L miglio . Quanto calore è rilasciato nell’atmosfera ogni miglio? 6 0,3 GJ @ 5 Applicazioni del primo principio 35 Un gas perfetto è inizialmente a 100 kPa di pressio- 쐌쐌쐌 In un atto respiratorio immetti nei polmoni circa 1 10 di mole di aria e poi la espiri avendola scaldata di circa 5 K. Quanto vale l’aumento di energia interna di quella quantità d’aria? 6 10 J@ 33 Un gas occupa inizialmente un volume di 2,00 L a 쐌쐌쐌 una pressione di 100 kPa. Si espande isotermica- 37 ESEMPIO ne e ha un volume di 20,0 L. Il gas è compresso isotermicamente in un nuovo stato in cui pressione e volume sono rispettivamente 200 kPa e 10,0 L. Quanto lavoro è necessario per compiere questa trasformazione? 6 1,39 kJ@ 36 Un gas occupa un volume di 0,3 L a una pressione 쐌쐌쐌 32 QUANTO? 쐌쐌쐌 4,0 atm e ha un volume di 1,0 L. Il gas è espanso isotermicamente in un nuovo stato in cui pressione e volume sono rispettivamente 1,0 atm e 4,0 L. Calcola il lavoro compiuto dal gas. 6 5,6 $ 10 2 J@ di 90 kPa. Segue tre trasformazioni che possono essere riportate su un piano P-V. Trasformazione A: si espande a pressione costante fino a occupare il doppio del volume iniziale; trasformazione B: diminuisce la sua pressione fino 75 kPa a volume costante; trasformazione C: aumenta il volume fino a 0,8 L mentre la pressione aumenta proporzionalmente fino a 96 kPa. Determina il lavoro compiuto dal gas nell’intero percorso. 6 44 J@ 쐌쐌쐌 2,0 moli di elio vengono compresse isotermicamente alla temperatura di 20 °C, dimezzando il volume iniziale di 0,070 m 3 . Qual è il lavoro subito dal gas? E la variazione di energia interna? RISOLUZIONE Il lavoro compiuto dal gas è dato dall’equazione (6): VB VA Risultato numerico VA = 0,070 m 3 VB = ^1 2h VA = 0,035 m 3 R = 8,31 J ^mol $ Kh T = 20 °C n = 2,0 mol L = n RT ln In un gas perfetto l’energia interna non cambia durante una trasformazione isoterma, quindi: L = ^ 2 molh ^ 8,31 J ^ mol $ Khh ^ 293 Kh ln 0,035 m 3 0,070 m 3 = = - 3,4 kJ TU = 0 487 ESERCIZI 11 Il primo principio della termodinamica ESERCIZI Princìpi della termodinamica gia interna è di 456 J. Il gas si espande a pressione costante fino al volume di 3,00 L. Si raffredda a volume costante finché la pressione non raggiunge il valore di 2,00 atm. Traccia il processo descritto in un piano P-V e trova il lavoro compiuto dal gas. Calcola il calore fornito al gas durante tale processo. 6 608 J ; 1,06 kJ@ 38 Vengono espanse 3,0 moli di argon a una tempera- 쐌쐌 쐌 tura costante di 310 K da un volume di 0,010 m 3 a un volume finale di 0,040 m 3 . Quanto lavoro ha compiuto il gas? Determina l’energia interna finale del gas. 6 11 kJ ; 12 kJ@ 39 1 mole di gas perfetto si trova a una pressione di 쐌쐌 쐌 3,00 atm, occupa un volume di 1,00 L e la sua ener- 40 ESEMPIO 쐌쐌쐌 1 mole di gas perfetto si trova a una pressione di 3,00 atm, occupa un volume di 1,00 L e la sua energia interna è di 456 J. Il gas viene raffreddato a volume costante fino a raggiungere la pressione di 2,00 atm. Successivamente si espande a pressione costante fino a occupare un volume di 3,00 L. Trova il lavoro compiuto dal gas. Calcola il calore fornito al gas durante tale processo. RISOLUZIONE Il gas compie lavoro solo durante la trasformazione isobara L P . Per l’equazione (1) si ha: Risultato numerico P = 2,00 atm VA = 1,00 L VB = 3,00 L L P = ^2,00 $ 1,01 $ 10 5 Pah ^3,00 $ 10-3 m 3 - 1,00 $ 10-3 m 3h = = 404 J Per calcolare il calore fornito al gas utilizziamo l’espressione del primo principio. Indichiamo con U i e U f l’energia interna del gas nello stato iniziale e in quello finale. TU = Q - L & Q = TU + L = U f - U i + L Dall’energia interna iniziale 1 U i = n f Pi V i 2 si ricava il valore (1/2) nf Ui 1 = nf 2 Pi V i L’energia finale U f = 1 nfPf V f invece è 2 Uf = e Ui U i Pf V f o Pf V f = Pi V i Pi V i Risultato numerico U i = 456 J L = 404 J Pf = 2,00 atm V f = 3,00 L Pi = 3,00 atm V i = 1,00 L 488 L P = P TV = P ^ V B - V A h Uf = (456 J) (2,00 atm) (3,00 L) = 912 J (3,00 atm) (1,00 L) Q = 912 J - 456 J + 404 J = 860 J 41 1,0 moli di gas perfetto si trovano a una pressione 쐌쐌쐌 di 3,0 atm, occupano un volume di 1,0 L e la loro energia interna è di 456 J. Il gas si espande isotermicamente fino a occupare un volume di 3,0 L e ad avere una pressione di 1,0 atm. Successivamente è riscaldato a volume costante finché la sua pressione non è diventata di 2,0 atm. Traccia il processo descritto in un piano P-V e trova il lavoro compiuto dal gas. Calcola il calore fornito al gas durante tale processo. 6 0,33 kJ ; 0,79 kJ @ 6 Calori specifici del gas perfetto La fotosfera può essere considerata la superficie del Sole. Essa è composta prevalentemente di idrogeno e di elio e la sua superficie ha una temperatura di circa 4000 °C. A questa temperatura la fotosfera è ben descrivibile come un gas perfetto monoatomico. Quanto vale l’energia interna di una mole di questo gas? 6. 50 kJ@ 43 5 moli di gas monoatomico si trovano alla tempera- 쐌쐌쐌 3,0 moli di gas biatomico. Il gas assorbe calore e la sua temperatura aumenta di 60 °C. Trova la variazione di energia interna. 6 3,7 kJ@ 45 5,0 moli di gas perfetto monoatomico passano dalla 쐌쐌쐌 temperatura di 400 K a quella di 510 K a seguito di un lavoro subito di 2,0 kJ. Quanto vale il calore scambiato? 6 4,9 kJ@ 46 Un gas ideale biatomico è contenuto in un conteni- 쐌쐌쐌 tore cubico di lato 0,50 m e a 130 kPa di pressione. Si vuole diminuire la pressione fino a 100 kPa. Quanto calore devi sottrarre? 6 9,4 kJ@ 47 Il calore specifico del vapore acqueo, ipotizzato 쐌쐌쐌 come gas perfetto ^M = 18,0 g molh e misurato a pressione costante, è 2,50 k J ^kg $ Kh . Calcola il suo calore specifico a volume costante. 6 2,0 k J ^kg $ Kh@ 48 Il calore specifico dell’aria ^M = 29,0 g mol h a 0 °C 쐌쐌쐌 e misurato a pressione costante è 1,00 J ^g $ Kh . Calcola il suo calore specifico a volume costante. 6 0,714 J ^ g $ Kh@ tura di 20 °C. 49 ESEMPIO 6 2 $ 10 4 J@ 44 In un contenitore a pareti rigide sono contenute 쐌쐌쐌 42 QUANTO? 쐌쐌쐌 Determina l’energia interna del gas. 쐌쐌쐌 1,0 moli di argon a pressione atmosferica vengono riscaldate da 293 K a 373 K. Durante il riscaldamento si tiene costante il volume. Quanto calore bisogna fornire? Determina l’aumento dell’energia interna del gas. RISOLUZIONE Il calore molare a volume costante per un gas perfetto monoatomico è dato dalla (17): CV = Il calore da fornire per aumentare di 80 K la temperatura del gas è dato dalla (16): Q = C V TT 3 R 2 Risultato numerico R = 8,3 J (mol $ K) TT = 80 K Q = C V TT = In una trasformazione isocora non si compie lavoro ^L = 0h, quindi per il primo principio si ha: TU = Q - L = Q 3 ^ 8,3 J (mol $ K)h ^ 80 Kh = 1,0 kJ 2 489 ESERCIZI 11 Il primo principio della termodinamica ESERCIZI Princìpi della termodinamica Risultato numerico Q = 1,0 kJ TU = Q = 1,0 kJ 50 2,0 moli di elio alla pressione atmosferica vengono 쐌쐌 쐌 riscaldate da 293 K a 373 K. Durante il processo la pressione viene mantenuta costante. Quanto calore bisogna fornire? 6 3,3 kJ@ 55 쐌쐌쐌 51 La capacità termica a volume costante di una certa 쐌쐌 쐌 quantità di gas monoatomico è 49,8 J K . Trova il numero di moli del gas. Calcola l’energia interna di questo gas alla temperatura T = 300 K. Determina la capacità termica del gas a pressione costante. 6 4,00 mol ; 15,0 kJ ; 83,0 J K @ 52 La legge di Dulong e Petit fu utilizzata inizialmente 쐌쐌 쐌 per determinare la massa molecolare di una sostanza dalla misura della sua capacità termica. Supponi che la misura del calore specifico di un certo solido dia il valore 0,447 k J ^kg $ Kh . Trova la massa molecolare della sostanza e individua di quale elemento si tratta. 6 55,8 u @ 7 Trasformazioni adiabatiche 56 QUANTO? 쐌쐌쐌 53 Un certo elemento solido ha un calore specifico di 쐌쐌 쐌 0,131 k J ^kg $ Kh e segue la legge di Dulong e Petit. Calcola la massa molecolare della sostanza e individua di quale elemento si tratta. 6 190 u @ certo gas supera di 29,1 J K quella a volume costante. Trova il numero di moli del gas. Quanto valgono C V e C P nel caso di gas monoatomico? E nel caso di gas biatomico? 6 3,5 mol ; C V = 43,6 J K , C P = 72,7 J K ; C V = 72,7 J K , C P = 101,8 J K@ 59 ESEMPIO Una termica è una bolla d’aria calda che si forma in prossimità del suolo e sale per effetto della spinta di Archimede. La trasformazione subita dall’aria è ben descritta da una adiabatica. Quanto vale la temperatura di una termica, che al suolo ^P = 1 atmh ha una temperatura di 28 °C, quando ha raggiunto una quota dove la pressione è di 0,7 atm, nell’ipotesi che non ci sia stata condensazione di vapore acqueo? 6. 0 °C@ 57 1 mole di gas perfetto monoatomico compie una 쐌쐌쐌 54 La capacità termica a pressione costante per un 쐌쐌쐌 1,00 $ 10 2 moli di elio effettuano in successione le seguenti trasformazioni: isocora da A a B, isoterma da B a C, isobara da C ad A. È noto che TA = 273 K , PA = 1,00 atm e PB = 2 PA . Determina V C . Calcola il lavoro compiuto dal gas durante il ciclo di trasformazioni. Dimostra che in un ciclo il calore assorbito dal gas è uguale al lavoro che esso compie. 6 4,48 m 3 ; 87,7 kJ @ ^Per l\elio C V = ^3 2h R.h trasformazione adiabatica portando la sua temperatura da 350 K a 300 K. Calcola la variazione di energia interna. 6 623 J@ 58 Un gas perfetto biatomico è contenuto in un reci- 쐌쐌쐌 piente di 3,0 L che non scambia calore con l’esterno. A seguito di una sua compressione la pressione triplica rispetto a quella iniziale. Determina il volume finale occupato dal gas. 6 1,4 L@ 쐌쐌쐌 In un contenitore isolante di 2,0 L si trovano 2,0 moli di argon a una temperatura di 300 K. Il gas si espande e occupa un volume di 2,7 L. Quanto vale la temperatura finale del gas? Che lavoro ha compiuto il gas? 490 RISOLUZIONE Dato che si tratta di una trasformazione adiabatica, utilizziamo l’equazione (27) e isoliamo Tf : Ti V ic - 1 = Tf V fc - 1 & Tf = e Tf = e Per calcolare il lavoro compiuto dal gas utilizziamo l’equazione (25): L = - TU = n c V ^ T i - T f h L=2 adiabaticamene e compiono un lavoro di 950 J, portandosi alla temperatura di 270 K e a un volume di 0,130 m 3 . Qual era la temperatura iniziale del gas? E il suo volume iniziale? 6 293 K ; 0,106 m 3@ il gas compie un lavoro di 870 J e arriva a 360 K. Determina il numero n di moli. 6 1,7 mol@ 64 1,0 moli di gas perfetto monoatomico vengono 쐌쐌쐌 61 100 g di ghiaccio alla temperatura di 0 °C fondono in una bacinella che si trova in una stanza a 24 °C. Determina la quantità di calore scambiata con l’ambiente esterno quando si è raggiunto l’equilibrio. Quanto vale la variazione di energia interna all’equilibrio? 65 1,0 moli di gas monoatomico sono contenute a pres- 쐌쐌쐌 62 A 1,0 mole di gas perfetto monoatomico, inizial- mente a 273 K e 1,0 atm, sono forniti 500 J di calore. Calcola l’energia interna iniziale, quella finale e il lavoro compiuto dal gas a pressione costante. Ripeti il calcolo per una trasformazione a volume costante. 6 3,4 kJ , 3,7 kJ , 0,20 kJ ; 3,4 kJ , 3,9 kJ , 0 J@ 63 Considera n moli di gas biatomico che si trovano 쐌쐌 쐌 a una pressione di 300 kPa in un volume di 0,018 m 3. Durante una trasformazione adiabatica riscaldate a volume costante da 300 K a 600 K. Calcola il calore fornito, il lavoro compiuto e la variazione di energia interna. Il gas viene ora riscaldato a pressione costante, sempre da 300 K a 600 K. Ripeti il calcolo precedente. 6 3,7 kJ , 0 J , 3,7 kJ ; 6,2 kJ , 2,5 kJ , 3,7 kJ@ 6 4,3 $ 10 4 J ; 4,3 $ 10 4 J ^il lavoro risulta trascurabileh@ 쐌쐌 쐌 3 ^ 8,31 J ^ mol $ Khh ^ 3,00 $ 10 2 K - 2,5 $ 10 2 Kh = 2 = 1 kJ 60 2,0 moli di gas perfetto biatomico si espandono 쐌쐌 쐌 2,0 L 2 3 o ^ 300 Kh = 2,5 $ 10 2 K 2,7 L Risultato numerico Ti = 300 K Tf = 2,5 $ 10 2 K n=2 c V = ^ 3 2h R 쐌 쐌쐌 Vi c - 1 o Ti Vf Risultato numerico Ti = 300 K V i = 2,0 L V f = 2,7 L c=5 3 ESERCIZI 11 Il primo principio della termodinamica sione atmosferica in un cilindro, isolato termicamente, di volume 2,0 L e dotato di pistone. All’interno vengono posti 2,0 g di ghiaccio a 0 °C, che lentamente si scioglie. Quando il sistema raggiunge l’equilibrio si osserva che il pistone si è abbassato e il volume è passato a 1,7 L. Quanto vale la variazione dell’energia interna del gas? 6- 0,7 kJ @ 66 1,00 moli di gas perfetto, monoatomico, sono nello 쐌쐌쐌 stato iniziale con P = 2,00 atm e V = 10,0 L , indicato dal punto A nel grafico P-V a pagina seguente. Il gas si espande a pressione costante fino al punto B, dove il suo volume è 30,0 L e poi viene raffred- 491 Princìpi della termodinamica ESERCIZI dato a volume costante, finché la sua pressione non è diventata di 1,00 atm al punto C. Viene poi compresso a pressione costante fino al volume iniziale al punto D e infine riscaldato a volume costante, in modo da ritornare allo stato iniziale. Trova la temperatura di ciascun stato A, B, C e D. Quanto calore viene fornito lungo ciascun tratto del ciclo? Che valore ha il lavoro compiuto lungo ciascun tratto? Calcola l’energia interna in ogni stato. Determina il lavoro complessivo compiuto dal gas nell’intero ciclo. Qual è la quantità totale di calore fornita durante l’intero ciclo? PROBLEMI FINALI 69 Non tutti i gas sono uguali 쐌쐌쐌 Il lavoro svolto da una trasformazione dipende, oltre che dal tipo di trasformazione, anche dal gas che la subisce. Utilizza la tabella in fondo al paragrafo 6 del capitolo e considera una trasformazione adiabatica tra due temperature fissate. Determina il gas che compie o subisce meno lavoro. 70 Aria per il vento! 쐌쐌쐌 6 TA = 244 K , TB = 731 K , TC = 366 K , TD = 122 K ; Q AB = 10,1 kJ , Q BC = - 4,6 kJ , Q CD = - 5,1 kJ , Q DA = 1,5 kJ ; L AB = 4,05 kJ , L BC = 0 J , L CD = - 2,0 kJ , L DA = 0 J ; U A = 3,0 kJ , U B = 9,1 kJ , U C = 4,6 kJ , U D = 1,5 kJ ; L tot = 2,0 kJ ; Q tot = 2,0 kJ @ Una pompa usata per gonfiare la vela di un kitesurf contiene 0,1 moli di aria inizialmente a 20 °C. Quando si comprime l’aria lentamente, il sistema rimane in equilibrio termico e cede calore. Quanto calore fuoriesce se il volume viene dimezzato? 6 0,2 kJ @ 2 1 0 0 A B D C 10 20 V (L) 30 viaggi.virgilio.it P (atm) 3 40 71 L’energia di un termosifone 쐌쐌쐌 67 2,0 moli di ossigeno sono contenute in un conte- 쐌쐌쐌 nitore di 6,0 L alla temperatura di 320 K. Il gas si espande a pressione costante fino a occupare un volume di 8,0 L. Successivamente il contenitore, isolato dal-l’esterno, viene riportato alla temperatura iniziale tramite una trasformazione adiabatica. Determina il lavoro compiuto dal gas. 6 6,2 kJ@ 68 Il ciclo del problema precedente viene chiuso con 쐌쐌쐌 492 una trasformazione isoterma. Quanto vale il calore totale scambiato in questo ciclo? 6 0,85 kJ @ Un termosifone di alluminio pesa circa 10 kg. L’acqua che gli scorre dentro lo porta facilmente a una temperatura di 50 °C. Calcola la capacità termica e la variazione di energia interna rispetto allo zero assoluto. 6 9,2 $ 10 3 J K , 1,0 MJ @ 72 Un polmone in laboratorio 쐌쐌쐌 Spesso nei laboratori si utilizzano gas, come l’elio, che poi vanno recuperati. Prima che il gas sia ricompresso nelle bombole, viene accumulato in un grosso sacco, detto «polmone», libero di espandersi. Considera un «polmone» che contiene 10 m 3 di elio (gas monoatomico, massa atomica 4). In una giornata estiva la sua temperatura passa da 26 °C a 30 °C. Che variazione di volume subisce? 6 0,13 m 3 @ 11 Il primo principio della termodinamica Due bottiglie, una di vetro e una di plastica, entrambe da 1,5 L e piene d’aria ^C V = 2,5 Rh vengono messe nel freezer. La temperatura ambiente è 20 °C e la temperatura del freezer è circa - 10 °C. Quella di plastica verrà deformata mentre quella di vetro manterrà la sua forma. Calcola il calore massimo estratto dall’aria contenuta nelle bottiglie nei due casi. 6 42 J ; 59 J @ ESERCIZI mo e minimo all’interno del cilindro), un regime di rotazione di 3500 giri min e l’aria aspirata nel motore a una temperatura ambiente di 20 °C. Che temperatura viene raggiunta dall’aria nel momento di massima compressione? Quanto valgono il lavoro compiuto in un ciclo completo del motore e la potenza frenante di questo sistema? 6. 740 °C ; 10 kJ , 0,59 MW @ 73 Calore in bottiglia 쐌쐌쐌 76 Non è proprio così che funziona... 쐌쐌쐌 74 Adiabatica in atmosfera Le masse d’aria calda che si innalzano a causa della minore densità hanno scambi di calore molto ridotti con l’ambiente. La trasformazione a cui sono soggette è quindi in buona approssimazione adiabatica. Una massa di aria ^ CV = 2,5 Rh di 200 m 3 risale dal suolo ^P = 1,0 $ 10 5 Pa , T = 22 °Ch fino a 1000 m di quota, dove la pressione è l’89% di quella al livello del mare. Quanto vale la temperatura finale? Che lavoro viene compiuto nel limite di trasformazione quasi-statica? 6 12 °C ; . 2 MJ @ 6 165 K @ bassa pressione alta pressione compressore I grossi camion, oltre ai freni normali, sono dotati di un ulteriore sistema frenante, detto freno motore. Quando il freno è azionato dal conducente si interrompe l’alimentazione di carburante al motore: i cilindri del motore si riempiono così solo d’aria (a pressione atmosferica) che viene compressa dal moto dei pistoni in modo veloce e quindi praticamente adiabatico. Quando l’aria è compressa, viene poi espulsa tramite l’apertura delle valvole. Considera un motore di 15 000 cm 3 di cilindrata (volume massimo dei cilindri) con un rapporto di compressione di 22:1 (ovvero il rapporto tra il volume massi- motore evaporatore utilizzo del calore 75 Come fermare un bestione della strada condensatore valvola di espansione 77 Occhio alle ustioni ai polpacci... Uno sport di moda negli ultimi anni è il downhill in mountain bike. Consiste nell’affrontare ripide disce- montagna.tv 쐌쐌쐌 ziogeek.com 쐌쐌 쐌 ma tanto per cominciare a capire Considera un frigorifero che utilizza un gas perfetto (elio) per il ciclo di raffreddamento. Ipotizza che il compressore lo comprima a una pressione di 8 bar a temperatura ambiente e che l’espansione adiabatica nella valvola Joule-Thomson avvenga a una pressione pari a quella atmosferica. Di quanto diminuisce la temperatura del gas? fonte del calore 쐌쐌 쐌 493 Princìpi della termodinamica V o isocora, T o isoterma, Q o adiabatica ), ma come potrai immaginare le trasformazioni sono infinite, perché ogni curva nel piano P-V può essere una trasformazione termodinamica quasi-statica. Considera un gas che compie la trasformazione PV = cost. e torna al punto di partenza con una trasformazione isocora e una isobara. Ricava l’espressione del lavoro in funzione del volume iniziale e finale. ESERCIZI se con speciali biciclette attrezzate con freni molto efficienti. Considera un ciclista di massa 75 kg su una bici di 23 kg che compie una discesa di 300 m di dislivello. Ipotizza che i dischi di acciaio dei freni, massa complessiva 350 g, non dissipino calore nell’atmosfera. Quale sarebbe la temperatura raggiunta dai dischi dei freni? La temperatura, nella realtà, non supera i 250 °C. Determina la quantità di calore ceduta all’ambiente. (Trascura gli altri tipi di attrito.) 6. 1900 °C ; 250 kJ @ 6 L = nRTi 6 DV V i - ln ^ V f V ih@@ 81 La prima lega metallica 쐌쐌쐌 78 Meglio tenerla con una pinza... 쐌쐌 쐌 Una barretta di acciaio di massa 65 g viene molata e passa dalla temperatura ambiente all’incandescenza (750 °C). Calcola il lavoro compiuto dalla forza d’attrito. Il bronzo è una lega di rame ^M Cu = 64,5 g molh e stagno ^M Sn = 118,7 g molh . La percentuale di stagno, in massa, è circa l’8%. Trova il calore specifico per unità di massa secondo la legge di Dulong e Petit. 6 360 J ^kg $ Kh@ digilander.libero.it collectorclub.it 6 2,4 $ 10 4 J@ 79 La quadratura del cerchio 쐌쐌쐌 82 Il bilanciamento dei sottomarini 쐌쐌쐌 Per controllare il galleggiamento nei sottomarini si utilizzano apposite casse di zavorra presenti nello scafo che possono essere allagate o riempite d’aria. In questo modo si regola la spinta di Archimede sfruttando la differente densità di aria e acqua. Un Un ciclo termodinamico è rappresentato sul piano P-V, in cui V e P sono riportati rispettivamente in m 3 e 10 5 Pa, da una curva circolare con Pmin = 1 $ 10 5 Pa, Pmax = 3 $ 10 5 Pa e Vmin = 0,5 m 3 . Un altro ciclo, concentrico al primo, produce lo stesso lavoro, ma ha una forma quadrata. Calcola i valori di V min e V max per il secondo 6 0,67 m 3 ; 3,33 m 3@ ciclo. 494 Le trasformazioni termodinamiche che hai trovato nel capitolo sono quelle associate in modo più semplice alle variabili termodinamiche (P o isobara, operatorchan.org 80 Una trasformazione insolita 쐌쐌쐌 sottomarino nucleare di classe Typhoon ha una massa di 23 200 tonnellate in emersione e di 33 800 tonnellate in immersione. Uno di questi sottomarini si trova a 200 m di profondità ^densità dell’acqua di mare 1,03 $ 10 3 kg m 3h . Tieni conto che con le vasche di zavorra piene un sottomarino rimane a mezz’acqua. Quanto vale il lavoro svolto dal gas per svuotare 6 2,14 $ 10 7 J@ le vasche di zavorra? Quando i motori cessano di funzionare, il satellite viene perso. Una correzione di orbita prevede l’espulsione di 5 $ 10-2 kg di gas. Stima il lavoro svolto dal gas durante l’espansione. 60 J @ 85 L’errore di Agostoni 쐌쐌쐌 L’ARTE DELLA STIMA 83 Quanta energia hai? 쐌쐌쐌 La temperatura corporea di una persona normale è in media 37 °C. Stima l’energia interna di un essere umano. 6 4 $ 10 7 J @ 6 40 m ; il record mondiale di profondità in apnea senza pinne o pesi è 101 m@ 84 Correzioni in orbita I satelliti artificiali sono dotati di piccoli motori a reazione (espellono gas) con cui effettuare le correzioni necessarie per rimanere sull’orbita corretta. 86 Il lavoro in immersione 쐌쐌쐌 Il lavoro svolto dall’acqua sulla cassa toracica dell’apneista dell’esercizio precedente ha due contributi: l’energia potenziale elastica dell’apparato muscolare e scheletrico e quella dovuta alla compressione del gas all’interno dei polmoni. Stima il lavoro svolto sul gas. 6- 7 $ 10 2 J@ 87 Espansione al luna park 쐌쐌쐌 imageshack.us 쐌쐌쐌 In uno studio del 1965 il dott. Emilio Agostoni teorizzò che la profondità massima raggiungibile in apnea da un essere umano fosse data dal rapporto tra il volume massimo e il volume minimo che i polmoni sono in grado di avere. Durante un’immersione l’aria dei polmoni subisce una compressione molto forte, ma rimane in buona approssimazione a temperatura costante a causa del metabolismo e dell’isolamento assicurato dalla muta. Stima la profondità massima raggiungibile secondo Agostoni. I palloncini gonfiati con elio salgono a causa della minore densità del gas rispetto all’aria. I palloncini oltre a «galleggiare» a mezz’aria sono, appena riempiti, anche più freddi a causa dell’espansione adiabatica del gas che esce dalla bombola. La bombola ha una pressione interna di 10 7 Pa. Stima la temperatura teorica del gas appena entra nel palloncino. Stima il calore assorbito per andare a temperatura ambiente. 6 50 K ; 40 kJ @ 495 ESERCIZI 11 Il primo principio della termodinamica