ANGOLI ANGOLO : parte di piano delimitata da due semirette aventi la stessa origine VERTICE di un angolo : è l’origine comune alle due semirette LATI di un angolo : sono due segmenti di lunghezza a piacere, presi ciascuno su una delle semirette che formano l’angolo. B AB e AC lati dell’angolo A vertice dell’angolo A α C β Un angolo viene indicato usando le lettere minuscole dell’alfabeto greco, oppure le tre lettere usate per individuare i lati dell’angolo procedendo in senso orario ( N.B. il vertice si scrive sempre nella posizione centrale ) Nella figura sono stati disegnati due angoli : 1. angolo interno 2. angolo esterno α β ( giallo) si scrive anche ( verde ) si scrive anche BAˆ C CAˆ B ANGOLI PARTICOLARI UN angolo si dice : ANGOLO RETTO α = 90 ° V ANGOLO PIATTO α = 180 ° . V ANGOLO GIRO ANGOLO ACUTO . α = 360 ° V α < 90 ° V ANGOLO OTTUSO α > 90 ° V NON CONTIENE ANGOLO CONVESSO ( < 180° ) prolungamenti dei lati I PROLUNGAMENTI DEI SUOI LATI V CONTIENE ANGOLO CONCAVO ( > 180° ) I PROLUNGAMENTI DEI SUOI LATI V COPPIE DI ANGOLI PARTICOLARI DUE angoli si dicono : B C due angoli si dicono consecutivi fra loro ANGOLI CONSECUTIVI se hanno IL VERTICE E UN LATO IN COMUNE V A BVˆA e CVˆB sono consecutivi B due angoli si dicono adiacenti fra loro se hanno ANGOLI ADIACENTI ANGOLI COMPLEMENTARI ANGOLI SUPPLEMENTARI ANGOLI ESPLEMENTARI ANGOLI OPPOSTI AL VERTICE IL VERTICE E UN LATO IN COMUNE + I LATI NON COMUNI STANNO SULLA STESSA RETTA C V A BVˆA e CVˆB sono adiacenti due angoli α e β sono complementari se α + β = 90° due angoli α e β sono supplementari se α + β = 180° due angoli α e β sono esplementari se α + β = 360° due angoli si dicono opposti al vertice se I LATI DI UNO SONO I PROLUNGAMENTI DEI LATI DELL’ALTRO α β V α e β sono opposti al vertice T TE EO OR RE EM MA A DUE ANGOLI OPPOSTI AL VERTICE SONO SEMPRE UGUALI FRA LORO SVOLGIMENTO: DISEGNO IPOTESI TESI Devo verificare se è vero che α β V α e β sono opposti al vertice α=β DIMOSTRAZIONE Devo ragionare in base alle informazioni date dall’ipotesi e sfruttando eventuali regole sugli angoli……………………devo verificare che è vero quanto richiesto nella tesi 2) considero l’angolo colorato di rosso è un angolo piatto formato dalla somma di quindi γ α β V 3) COSTRUZIONE α e β sono opposti al vertice indico con l’angolo colorato in blu, compreso fra di essi γ γ + β = 180° considero l’angolo colorato di verde è un angolo piatto formato dalla somma di quindi 1) γeβ γeα γ + α = 180° 4) i due angoli rosso e verde sono pertanto uguali cioè γ+ β = γ+ α 5) se a questi due angoli uguali fra loro tolgo la γ parte comune ( blu ) ottengo sicuramente due angoli uguali γ=α γ= β α=β BISETTRICE DI UN ANGOLO La bisettrice di un angolo è il segmento che divide l’angolo in due parti uguali fra loro VC bisettrice di α β AVˆB α =β