la rappresentazione delle informazioni

ISTITUTO DI ISTRUZIONE SUPERIORE “G. M. ANGIOJ”
GRAFICA E COMUNICAZIONE
LA RAPPRESENTAZIONE DELLE INFORMAZIONI
Prof. G. Ciaschetti
DATI E INFORMAZIONI
Sappiamo che il computer è una macchina stupida, capace di eseguire calcoli in modo velocissimo,
ma non capace di pensare. Quando memorizziamo nel computer un qualsiasi dato, sia esso un
numero, una parola, un’immagine, un suono, un video, non è possibile fare in modo che a questo
dato il computer associ anche un significato: per fare questo, occorre un cervello pensante, come
quello dell’uomo, molto più intelligente di un computer.
Facciamo qualche esempio: se diciamo che lo sconto su un paio di scarpe da tennis è del 20 per
cento, sappiamo che il numero 20 rappresenta uno sconto, ma nel computer potrò inserire solo il
numero 20, poiché esso non è capace di associare al numero il fatto che rappresenta uno sconto. Un
altro esempio: se l’età di una persona è 18 anni, il computer può memorizzare 18, ma non il fatto
che questa sia un’età. Funziona anche per le immagini, i suoni e i video: un’immagine nel computer
è solo un’insieme di bit, messi in modo da dare un colore a ogni pixel dello schermo, ma il
computer non sa assolutamente se l’immagine che risulta riguarda una scena sportiva o una bella
donna o qualsiasi altra cosa.
L’uomo associa un significato ai dati, facendoli così diventare informazioni! Il computer,
invece, sa trattare solo dati “grezzi” privi di significato, tutti rappresentati usando il
linguaggio binario.
Figura 1: dati e informazioni
Il linguaggio binario, come ogni linguaggio, è costruito su un alfabeto. L’alfabeto binario, come è
noto, è formato dai soli simboli 0 e 1 (a differenza dell’alfabeto italiano che ha le 21 lettere A, B,
…, Z o quello inglese che ha le 26 lettere A, B, …, Y, Z). Per costruire il linguaggio, a partire
dall’alfabeto, si usano parole. Mentre nei linguaggi naturali (quelli dell’uomo, ad esempio, italiano,
inglese, russo, ecc.) le parole possono avere dimensioni qualsiasi (pippo è una parola di 5 simboli,
ciao di 4, ecc.), nel computer le parole hanno dimensione fissa, che dipende dal particolare
computer. Solitamente, le parole possono essere di 1 byte, 2 byte, 4 byte oppure 8 byte. (un byte è
una sequenza di 8 bit). Quindi, ad esempio, se un computer ha parole di 4 byte, esso userà sempre e
solo parole formate con 32 simboli 0 o 1, cioè 32 bit.
Quante parole si possono formare con tutti i simboli di un alfabeto? Vale la seguente regola:
con un alfabeto di n simboli, si possono costruire np diverse parole lunghe p
Esempio: se l’alfabeto è quello del sistema numerico decimale {0,1,…, 9} e abbiamo parole di 4 simboli,
possiamo costruire tutte le 104 = 10000 parole 0000, 0001, 0002, 0003, …, 9999.
Esempio: se l’alfabeto è quello binario {0,1} e abbiamo parole di 3 bit, possiamo costruire le 23 = 8 parole 000,
001, 010, 011, …, 111 (cioè tutti i numeri da 0 a 7).
Esempio: se l’alfabeto è quello italiano {A,B,C,…,Z} e abbiamo parole di 2 lettere, possiamo costruire tutte le
212 = 441 parole AA, AB, AC, …,AZ, BA, BB, …, BZ, …, ZZ.
Per meglio comprendere quello che diremo, diamo un po’ di definizioni delle grandezze che si
usano per misurare la quantità di informazione:
1 byte = 8 bit
1 Kbyte (chilo) = 210 byte = 1024 byte
1 Mbyte (mega) = 210 Kbyte = 1024 Kbyte (= 220 byte)
1 Gbyte (giga) = 210 Mbyte = 1024 Mbyte (= 230 byte)
1 Tbyte (tera) = 210 Gbyte = 1024 Gbyte (= 240 byte)
INSIEMI NUMERICI
Prima di parlare dei possibili tipi di dati che possiamo trovare dentro al computer, o dal punto di
vista dell’uomo, di come sono memorizzate i vari tipi di informazioni, è opportuno ricordare quali
sono gli insiemi numerici in matematica. Abbiamo:
-
insieme dei numeri naturali N = {0, 1, 2, 3, 4, 5,…}
-
insieme dei numeri relativi Z = {…, -3, -2, -1, 0, 1, 2, 3, …}
-
insieme dei numeri razionali Q = {
-
insieme dei numeri reali R = Q + numeri irrazionali (es.  e √2 sono numeri irrazionali)
p
dove p e q appartengono a Z e sono primi tra loro}
q
Si noti che non tutti i numeri possono essere rappresentati dentro a un computer. L’insieme dei
numeri naturali, ad esempio, è costituito da infiniti numeri, e per memorizzare un numero
infinitamente grande abbiamo bisogno di una memoria infinita. Ora, per quanta memoria abbiamo
nel nostro computer (4Gbyte? 8Gbyte? Qualunque!), non sarà mai infinita, quindi ci saranno alcuni
numeri troppo grandi per essere memorizzati. Lo stesso vale per i numeri relativi, quelli razionali, e
quelli reali.
Per ognuno degli insiemi numerici elencati, quindi, non tutti gli elementi dell’insieme potranno
essere rappresentati nel computer, ma solo una parte di essi.
In particolare, per quanto riguarda i numeri reali, notiamo che nessuno dei numeri irrazionali può
essere rappresentato con esattezza, perché hanno un numero infinito di cifre, ma possiamo
memorizzare nel computer solo una sua approssimazione. Allo stesso modo dovremo approssimare
anche i numeri razionali che hanno troppe posizioni decimali.
TIPI DI DATI
Classificando i dati secondo il loro tipo, distinguiamo innanzitutto dati numerici, dati
alfanumerici e dati multimediali.
-
Dati numerici: sono i numeri, così come li conosciamo dalla matematica, che nel computer
vengono rappresentati in binario;
-
Dati alfanumerici: sono i simboli che troviamo sulla tastiera (ma non solo) e comprendono
le lettere e tutti i caratteri speciali come la virgola, il punto e virgola, le parentesi tonde, lo
spazio bianco, ecc.;
-
Dati multimediali: sono le immagini, i suoni, le animazioni, i video, ecc.
Tra i dati numerici, possiamo distinguere i numeri interi (che non hanno una parte decimale) e i
numeri reali (che invece hanno una parte decimale).
A loro volta, i numeri interi possono essere suddivisi in interi senza segno (solo interi positivi) e
interi con segno (positivi e negativi), mentre i numeri reali possono essere in singola o in doppia
precisione, intendendo con precisione il grado di approssimazione che è possibile effettuare.
I dati alfanumerici possono essere singoli caratteri (come le lettera ‘A’, ‘B’, o i segni di
punteggiatura, o le parentesi, o ogni altro simbolo che possiamo digitare sulla tastiera) o sequenze
di caratteri dette stringhe (sono un po’ come le nostre parole, ad esempio “pippo”, “ciao mondo”,
ecc.).
I dati multimediali invece sono immagini, audio o video. Per ognuno di essi, vedremo le differenze
dei diversi formati.
Nella figura seguente è riassunta la divisione di tutti i tipi di dati che possiamo trovare nel
computer:
Figura 2: tipi di dati
RAPPRESENTAZIONE DEI NUMERI INTERI SENZA SEGNO
Stiamo parlando dell’insieme dei numeri naturali N = {0, 1, 2, 3, 4, 5,…}.
Nel computer, sono i numeri binari con cui abbiamo lavorato finora. Supponiamo di avere parole di
1 byte e consideriamo per il momento solo numeri interi positivi. I numeri che possiamo
rappresentare con l’alfabeto {0,1} su 8 bit sono tutti i numeri da 0 a 28-1 = 255. Se invece abbiamo
parole di 2 byte, i numeri che possiamo rappresentare sono tutti quelli da 0 a 216-1 = 65535. In
generale,
con parole di n bit si possono rappresentare tutti i numeri interi positivi da 0 a 2n -1.
Esercizio: quali sono il più piccolo e il più grande numero intero senza segno che si possono
rappresentare con parole di 6 bit?
Esercizio: quali sono il più piccolo e il più grande numero intero senza segno che si possono
rappresentare con parole di 24 bit?
Esercizio: quali sono il più piccolo e il più grande numero intero senza segno che si possono
rappresentare con parole di 32 bit?
Solitamente, nel computer i numeri interi senza segno sono rappresentati su parole di 2 o 4 byte.
RAPPRESENTAZIONE DEI NUMERI INTERI CON SEGNO
Stavolta parliamo dell’insieme dei numeri relativi Z = {…, -3, -2, -1, 0, 1, 2, 3, …}.
Rappresentando il numero in binario, uno dei bit, quello più a sinistra (quello più significativo, cioè
che ha maggior valore), viene usato per indicare il segno: 0 se il numero è positivo, 1 se il numero
è negativo. I restanti bit vengono invece usati per rappresentare il numero in binario.
Ad esempio, se abbiamo parole di 8 bit, il bit più a sinistra è utilizzato per il segno e i restanti 7 bit
per il numero. Con parole di 16 bit, invece, tolto un bit per il segno, restano a disposizione solo 15
bit per il numero.
Ok per il segno, ma i numeri come sono rappresentati?
Quelli positivi normalmente, in binario, come siamo abituati, seguendo la regola che abbiamo già
visto per i numeri senza segno: con n bit a disposizione per il numero, possiamo rappresentare tutti i
numeri da 0 a 2n – 1. Nei numeri con segno, però, degli n bit a disposizione dobbiamo usarne uno
per indicare il segno, quindi ne restano n –1, e possiamo arrivare al massimo al numero 2n-1 – 1.
Ad esempio, se abbiamo parole di 1 byte, tolto un bit per il segno, restano 7 bit a disposizione con
cui possiamo rappresentare tutti i numeri positivi da 0 a 27 – 1 = 127. Se invece abbiamo, ad
esempio, una parola di 32 bit, il numero positivo con segno che possiamo rappresentare è 2 32 – 1
che fa circa 4 miliardi.
I numeri negativi, invece, sono rappresentati non in valore assoluto, ma in complemento a 2: il
numero –N è rappresentato come il complemento a 2 del numero N. Ma cos’è, esattamente, il
complemento di un numero?
DEFINIZIONE: data una base b, e un numero N in base b di n cifre, si definisce
complemento di N in base b il numero
N(b) = bn - N
Esempio: se b=10, e N = 982, risulta n = 3 e abbiamo 982(10) = 103 – 982 = 18
Esempio: se b=2, e N = 001, risulta n = 3 e abbiamo 001(2) = 23 – 1 = 111
Esempio: se b=10, e N = 24, risulta n = 2 e abbiamo 24(10) = 102 – 24 = 78
Dagli esempi, si può osservare che il complemento di un numero è quanto manca al numero per
arrivare alla prossima potenza della base. Nel primo esempio, quanto manca a 982 per arrivare a
1000, nel secondo esempio quanto manca a 1 per arrivare a 8 in binario. Nel terzo esempio, quanto
manca a 24 per arrivare a 100.
Per trovare il complemento di un numero binario, anche detto complemento a 2, possiamo seguire
una regola pratica molto semplice (di fatto, il computer fa così):
REGOLA PRATICA: Si prende il numero in binario, si invertono tutti i bit (gli 0 diventano 1 e gli
1 diventano 0), e al numero ottenuto si somma 1.
Perché questo funzioni, tuttavia, è necessario fissare il numero di bit della parola con cui sarà
rappresentato il numero. Negli esempi che seguono, prendiamo parole di 1 byte, ma potrebbero
tranquillamente essere di 2 byte, 4 byte o quanti vogliamo.
Esempio: dato il numero
01010011
si scambiano le cifre
10101100 +
si somma 1
complemento a 2
1=
10101101
Esempio: dato il numero
01011110
si scambiano le cifre
10100001 +
si somma 1
complemento a 2
1=
10100010
Torniamo ai numeri negativi: abbiamo detto che sono rappresentati in complemento a 2. Ma come?
Semplice, si scrive il numero come positivo, con tutti i bit a disposizione nella parola, e si fa il
suo complemento applicando la regola appena vista. Supponendo ancora di avere parole di 1
byte,
Esempio: rappresentazione di -5
rappresentiamo il 5
00000101
facciamo il suo complemento
11111011
Esempio: rappresentazione di -121
rappresentiamo il 121
01111001
facciamo il suo complemento
10000111
Possiamo verificare che il numero negativo così rappresentato è proprio l’opposto del suo valore
assoluto. Infatti, se fissiamo il numero di bit (ad esempio 8), e ignoriamo eventuali riporti su cifre
eccedenti a sinistra, possiamo verificare quanto detto
Esempio: 5 + (-5) = 0
rappresentazione di 5
00000101
rappresentazione di -5
11111011
somma
100000000 (sarebbe infatti 28 se potessimo prendere il nono bit)
Facciamo anche un esempio supponendo di avere a disposizione parole di 2 byte.
Esempio: rappresentazione di -65
rappresentiamo il 65
0000000001000001
facciamo il suo complemento
1111111110111111
Vediamo allora quali numeri negativi possiamo rappresentare. Nell’ipotesi di avere due byte a
disposizione per le nostre parole, iniziamo col fare il complemento a 2 dei numeri 1, 2, ….
1
0000000000000001
-1
1111111111111111
2
0000000000000010
-2
1111111111111110
3
0000000000000011
-3
1111111111111101
4
0000000000000100
-4
1111111111111100
…
Come si può osservare, i numeri positivi iniziano con 0, quelli negativi con 1. Inoltre, mentre i
numeri positivi crescono, quelli negativi decrescono. Arriviamo fino ai più grandi positivi e i più
piccoli negativi che possiamo rappresentare su due byte.
32765
0111111111111101
-32765
1000000000000011
32766
0111111111111110
-32766
1000000000000010
32767
0111111111111111
-32767
1000000000000001
Possiamo decrescere ancora con i numeri negativi (mentre per quelli positivi non possiamo più
crescere), quindi possiamo rappresentare anche il -32768 con 1000000000000000.
In definitiva, con 2 byte a disposizione, possiamo rappresentare tutti i numeri interi da -32768 a
32767. Se avessimo invece parole di un solo byte, potremmo rappresentare tutti gli interi da -128 a
127. In generale, vale la seguente regola:
con n bit si possono rappresentare tutti i numeri interi con segno da -2n-1 a 2n-1 -1.
Solitamente, nel computer i numeri interi con segno sono rappresentati su parole di 2 o 4 byte.
Esercizio: quali sono il più piccolo e il più grande numero intero con segno che si possono
rappresentare con parole di 24 bit?
Esercizio: quali sono il più piccolo e il più grande numero intero con segno che si possono
rappresentare con parole di 5 bit?
Esercizio: come viene rappresentato nel computer il numero -24 con una parola di 16 bit?
RAPPRESENTAZIONE DEI NUMERI REALI
Come abbiamo già detto, poiché i numeri irrazionali possono essere rappresentati solo con una loro
approssimazione, parliamo dell’insieme dei numeri razionali Q, cioè quelli che hanno una parte
intera e una parte decimale.
La rappresentazione che noi umani siamo abituati ad usare è quella in virgola fissa, che prevede di
elencare a sinistra della virgola la parte intera, e a destra della virgola la parte decimale.
Esempi:
1.5
0.000123
12.01
Il computer invece utilizza una rappresentazione in virgola mobile, o anche detta notazione
scientifica. In questa, si distinguono una mantissa e un esponente, e si usa la lettera E per separare
le due cose. Il significato del numero è il seguente:
mantissaEesponente = mantissa * 10 esponente.
Esempi:
numero in virgola mobile
3E-4
-12E5
1.4E2
numero rappresentato
3*10-4
-12*105
1.4*102
numero in virgola fissa
0.0003
-120000
1400
Un numero in virgola mobile può sempre essere scritto in modo che la mantissa abbia un valore
assoluto minore di 1, e la prima cifra decimale maggiore di zero. In questo caso, si parla di
notazione in virgola mobile normalizzata, e il computer usa questo modo di rappresentare i
numeri in virgola mobile.
Esempi:
3E-4
12E5
1.4E2
virgola mobile normalizzata
0.3E-3
0.12E7
0.14E3
In genere, i reali sono rappresentati su più parole, poiché per essi è richiesta una precisione
maggiore che per gli interi. Avendo a disposizione 4 byte, ad esempio, la ripartizione dei bit è come
segue:
 Un bit per il segno (0 se positivo, 1 se negativo)
 8 bit per l’esponente aumentato di 127 (negativo se <127, positivo se >127)
 23 bit per la mantissa (lo 0 e la virgola non sono rappresentati)
Se si hanno a disposizione 8 byte, invece, il numero di bit per la mantissa e l’esponente risulta
raddoppiato. Più precisamente, con 8 byte a disposizione abbiamo un bit per il segno, 16 bit per
l’esponente (che risulta aumentato di 32767) e 47 bit per la mantissa.
Solitamente, i numeri reali in singola precisione sono rappresentati su 4 byte, quelli in doppia
precisione su 8 byte. Il termine “precisione” sta a indicare il fatto che per molti numeri che non
possono essere rappresentati (i numeri irrazionali, oppure quelli razionali con troppe cifre decimali)
possiamo usare solo un’approssimazione, che sarà tanto più precisa quante più cifre decimali
riusciamo a codificare in binario.
RAPPRESENTAZIONE DELLE INFORMAZIONI ALFANUMERICHE
Per la rappresentazione dei caratteri si utilizza una codifica: ogni carattere viene associato a un
numero binario. Le codifiche più usate sono:
-
la codifica ASCII (American Standard Code for Information Interchange), associa un
numero di 8 bit a ogni possibile carattere (che sia una lettera, una cifra, un segno di
punteggiatura, un caratteri speciali, ecc.). Quindi, secondo la codifica ASCII, è possibile
rappresentare fino a 28 = 256 simboli. Solitamente, leggendo una tabella ASCII come quella
in figura seguente, troviamo il numero corrispondente a un carattere riportato, anziché in
binario, come il suo equivalente in decimale, in ottale o in esadecimale. Per richiamare un
particolare carattere conoscendo il suo codice ASCII è possibile premere ALT + numero
(sul tastierino numerico). Ad esempio, il carattere ‘{‘ corrisponde a ALT+123, mentre il
carattere ‘}’ corrisponde a ALT+125 (ci serviranno molto nel linguaggio C).
-
la codifica UNICODE (Unified Code): poiché la globalizzazione ha comportato la necessità
di comunicare sempre più spesso con persone che usano altri alfabeti, diversi da quello
latino (cirillico per i russi, ideogrammi cinesi e giapponesi, ecc.), è stata ampliata la codifica
ASCII da 8 a 16 bit, prendendo il nome di UNICODE. Con questa codifica, è possibile
rappresentare fino a 28 = 65536 caratteri diversi.
Le stringhe sono sequenze di caratteri, e vengono rappresentate in modi diversi a seconda dei
linguaggi di programmazione. Il Pascal e il Visual Basic, ad esempio, utilizzano il tipo string che
può avere un numero qualsiasi di caratteri. Il C, invece, nella sua versione “base”, non prevede un
tipo string, ma considera le stringhe come vettori di caratteri. Solo il C++, successivamente, ha
introdotto delle estensioni del linguaggio per supportare tale tipo di dato.
Figura 3: tabella dei codici ASCII
RAPPRESENTAZIONE DELLE INFORMAZIONI MULTIMEDIALI
1. Immagini
Le immagini nel computer possono essere di due tipi: immagini raster o immagini vettoriali.
-
Immagini raster: l’immagine è realizzata con una griglia di pixel, a ognuno dei quali viene
dato uno specifico colore.
Figura 4: immagine raster
Il numero di pixel che vengono utilizzati è detto risoluzione grafica dell’immagine, ed è
misurato in dpi (dots per inch – punti per pollice). Maggiore è la risoluzione grafica,
maggiore è la qualità dell’immagine.
Il numero di colori che è possibile assegnare a ogni pixel si chiama risoluzione cromatica
dell’immagine, ed è determinato dal numero di bit che vengono usati (la risoluzione
cromatica, infatti, viene anche chiamata bitdepth – profondità di bit). Con n bit, si possono
rappresentare fino a 2n colori. Ad esempio, con 8 bit abbiamo un’immagine a 256 colori, con
16 bit un’immagine a 65536 colori, con 24 bit un’immagine a 16 milioni di colori (si parla
in questo caso di true color – i colori sono formati a partire dai colori di base rosso, verde e
blu, sistema RGB, e vengono usati 8 bit per il rosso, 8 bit per il verde, 8 bit per il blu).
Il vantaggio delle immagini raster è che usando la griglia di pixel si riescono a rappresentare
immagini di maggiore qualità. Lo svantaggio principale sta nel fatto che ingrandendo
l’immagine anche la dimensione dei pixel si ingrandisce, con decadimento della qualità
(effetto sgranamento).
Formati di immagini raster sono:
bmp
Bitmap: è il formato raster puro: la dimensione del file sarà dato dal prodotto
del numero di pixel per la risoluzione cromatica. Non è adatto per internet, a
causa della grande dimensione dei file.
jpeg
È un formato compresso di alta qualità (16 milioni di colori), molto usato per
la diffusione su internet di immagini fotografiche.
gif
E’ un formato compresso di bassa qualità (256 colori), che però supporta la
trasparenza e le animazioni in sequenza.
png
E’ un formato compresso che ha tutti i vantaggi dei formati jpeg e gif, e sta
diventando sempre più diffuso.
-
Immagini vettoriali: l’immagine è costruita con oggetti geometrici (curve, linee, cerchi,
poligoni, ecc.), ognuno dei quali ha una propria informazione di colore. Di ogni oggetto
geometrico, viene memorizzata solo la relativa formula matematica.
Figura 5: immagine vettoriale
I principali vantaggi delle immagini vettoriali sono che, a differenza delle immagini raster,
la qualità dell’immagine rimane inalterata anche a seguito di ingrandimenti o rotazioni;
inoltre, la dimensione dei file è molto piccola.
Lo svantaggio principale è che questo tipo di immagini supportano un basso numero di
colori, e non sono adatte per immagini troppo complesse (come ad esempio le fotografie).
Formati di immagini vettoriali sono:
wmf
Windows Meta File: è il formato delle clip art di Windows
cgm
Computer Graphics Metafile: non è adatto per immagini su internet, perché
non tutti i browser sanno interpretare le formule matematiche per ricostruire
l’immagine
2. Audio
Le informazioni sonore nel computer sono memorizzate effettuando un campionamento e una
quantizzazione del segnale audio analogico.
Nel campionamento, si misura ogni tot di tempo (frequenza di campionamento, misurata in Hertz –
quante volte in un secondo) l’ampiezza dell’onda sonora.
Figura 6: il campionamento
Maggiore è la frequenza di campionamento, migliore è l’approssimazione digitale del suono, come
possiamo vedere nella figura seguente.
Figura 6: la frequenza di campionamento
Perché il campionamento non abbia perdita di qualità, basta campionare a una frequenza maggiore
del doppio della frequenza più alta del suono da digitalizzare. Ad esempio, se dobbiamo campionare
la voce umana che ha frequenze che variano da 500 a 2000 Hertz, per non perdere qualità dobbiamo
usare una frequenza di campionamento di almeno 4000 Hert. Siccome i suoni udibili dall’uomo
hanno frequenze che variano da 20 a 20K Hertz, campionando a 40KHertz non c’è nessuna perdita
di qualità sonora. Ovviamente, maggiore è la frequenza di campionamento, maggiore è
l’occupazione di memoria del suono digitale.
Nella quantizzazione, si decidono i possibili livelli che è possibile associare a ogni campione (non
possono essere infiniti). A ogni campione viene dato il livello più vicino per approssimazione.
Questo parametro è legato al numero di bit (e infatti, si chiama anche bitdepth o profondità di bit),
secondo la seguente regola:
con n bit si ottengono 2n possibili livelli di quantizzazione. Ad esempio, con 1 bit si ottengono 2
diversi livelli di quantizzazione, con 8 bit abbiamo 256 livelli, con 16 bit abbiamo 65536 livelli,
ecc.
Figura 7: la quantizzazione
Ovviamente, maggiore è il numero di livelli di quantizzazione, maggiore è l’occupazione di
memoria. la frequenza di campionamento, maggiore è l’occupazione di memoria del suono digitale.
La frequenza di campionamento, così come la profondità di bit da utilizzare quando si digitalizza un
suono, dipendono dal tipo di suono: per una conversazione telefonica, ad esempio, bastano valori
bassi (fc = 8KHz, bitdepth = 8), mentre per un brano di qualità CD servono valori molto alti
(fc = 44KHz, bitdepth = 32).
Formati di audio digitali sono:
wav
Wave: è il formato raster puro per l’audio digitale: l’occupazione di memoria
è pari al prodotto della frequenza di campionamento per la durata del brano
per il bitdepth per il numero di canali (mono o stereo).
mp3
E’ un formato compresso molto utile per lo scambio (anche in internet) di
audio digitale: riesce a ridurre l’occupazione di memoria fino a 12 volte
senza perdita di qualità.
3. Video
Si tratta di immagini digitali in movimento, che possono contenere suoni oppure no. Per dare
all’occhio umano l’impressione del movimento, si fanno scorrere le immagini in modo molto rapido
(30 immagini al secondo per i film, 24 immagini al secondo per i cartoni animati).
La digitalizzazione di contenuti video richiede una grande occupazione di memoria, per cui è
sempre necessario l’uso di tecniche di compressione dei dati.
I principali vantaggi del video digitale rispetto a quello analogico sono i seguenti:

Facilità di fare delle copie dell'originale, senza perdita di qualità.

Facilità di inviare il filmato (trasferimento di un file, streaming, ecc.)

Facilità di manipolare il filmato (montaggio, effetti speciali, ecc.)
Formati di video digitali sono:
avi
Audio Video Interleave: E’ un formato “contenitore” che può contenere un
flusso video e fino a due flussi audio in altri formati. Non supporta sottotitoli.
flv
E’ il formato utilizzato da Flash Player, utilizzato dai siti Youtube, Google, e
molti altri.
wmv
Windows Media Video: è il formato usato da Movie Maker, e dispone di
meccanismi per la gestione dei diritti d’autore digitali.
mp4
E’ l’evoluzione video dell’algoritmo di compressione mp3 per l’audio, basato
su tecnologia QuickTime. Consente un’ottima compressione senza perdita di
qualità.