Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l’insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo (definizione) Si dice angolo ciascuna delle due parti di piano individuate da due semirette aventi la stessa origine, semirette incluse. Segmenti consecutivi (definizione) Due segmenti si dicono consecutivi quando hanno un estremo in comune. Segmenti adiacenti (definizione) Due segmenti si dicono adiacenti quando sono consecutivi e appartengono alla stessa retta. Angoli consecutivi (definizione) Due angoli si dicono consecutivi quando hanno il vertice e un lato in comune. Angoli adiacenti (definizione) Due angoli si dicono adiacenti quando sono consecutivi e i lati non in comune appartengono alla stessa retta. Punto medio di un segmento (definizione) Si dice punto medio di un segmento il punto, interno al segmento, che lo divide in due segmenti congruenti. Bisettrice di un angolo (definizione) Si dice bisettrice di un angolo la semiretta che ha per origine il vertice dell’angolo, interna all’angolo, che lo divide in due angoli congruenti. Angoli complementari di uno stesso angolo (o di angoli congruenti) sono congruenti. Angoli opposti al vertice sono congruenti. Ovvero: angoli supplementari di uno stesso angolo (o di angoli congruenti) sono congruenti. Bisettrice di un triangolo (definizione) In un triangolo ABC, si dice bisettrice relativa al vertice C il segmento giacente sulla bisettrice dell’angolo C che congiunge il vertice C con il lato opposto. Mediana di un triangolo (definizione) In un triangolo ABC, si dice mediana relativa al lato AB il segmento che ha per estremi il punto medio di AB e il vertice C opposto a quel lato. Altezza di un triangolo (definizione) In un triangolo ABC, si dice altezza relativa al lato AB il segmento che, partendo dal vertice C opposto al lato, incontra il lato stesso (o il suo prolungamento) formando con esso due angoli retti. Primo criterio di congruenza dei triangoli Se due triangoli hanno ordinatamente congruenti due lati e l’angolo tra essi compreso, allora sono congruenti. Secondo criterio di congruenza dei triangoli Se due triangoli hanno ordinatamente congruenti un lato e i due angoli ad esso adiacenti, allora sono congruenti. Terzo criterio di congruenza dei triangoli Se due triangoli hanno ordinatamente congruenti i tre lati, allora sono congruenti. Teorema del triangolo isoscele Un triangolo è isoscele se e solo se i suoi angoli alla base sono congruenti. Teorema del triangolo equilatero Un triangolo è equilatero se e solo se tutti i suoi angoli sono congruenti. In un triangolo isoscele, coincidono: la bisettrice dell’angolo al vertice, l’altezza relativa alla base, la mediana relativa alla base. In un triangolo, all’angolo maggiore si oppone il lato maggiore e viceversa. Disuguaglianza triangolare In un triangolo, ciascun lato è minore della somma degli altri due. In un triangolo, ciascun lato è maggiore della differenza degli altri due. AB < BC + CA AB > CA - BC BC < CA + AB BC > AB - CA CA < AB + BC CA > AB - BC Rette perpendicolari (definizione) Due rette si dicono perpendicolari se si incontrano formando quattro angoli retti. Per un punto esterno ad una retta r, passa una e una sola perpendicolare ad r. Segmento di distanza di un punto da una retta (definizione) Si dice segmento di distanza di un punto P da una retta r quel segmento che ha per estremi il punto P e il piede della perpendicolare condotta dal punto alla retta. Rette parallele (definizione) Due rette si dicono parallele se non hanno alcun punto in comune, oppure coincidono. Quinto postulato di Euclide Per un punto esterno ad una retta r, passa una e una sola parallela ad r. Teorema delle rette parallele Due rette parallele tagliate da una trasversale individuano: coppie di angoli alterni (interni o esterni) congruenti; coppie di angoli corrispondenti congruenti; coppie di angoli coniugati (interni o esterni) supplementari. 1 e 8, oppure 2 e 7 si dicono alterni esterni 3 e 6, oppure 4 e 5 si dicono alterni interni 1 e 5, oppure 2 e 6, oppure 3 e 7, oppure 4 e 8 si dicono corrispondenti 1 e 7, oppure 2 e 8 si dicono coniugati esterni 3 e 5, oppure 4 e 6 si dicono coniugati interni Teorema inverso delle rette parallele Due rette, tagliate da una terza, sono parallele se individuano almeno una delle seguenti: una coppia di angoli alterni (interni o esterni) congruenti; una coppie di angoli corrispondenti congruenti; una coppia di angoli coniugati (interni o esterni) supplementari. Angolo esterno di un triangolo (definizione) Si dice angolo esterno di un triangolo ciascuno dei due angoli adiacenti ad ogni angolo interno del triangolo. Teorema dell’angolo esterno In un triangolo, ogni angolo esterno è congruente alla somma dei due angoli non adiacenti ad esso. In un triangolo, la somma degli angoli interni è congruente ad un angolo piatto. In un poligono di n lati, la somma degli angoli interni è congruente a (n-2) angoli piatti. In un triangolo equilatero, ogni angolo è congruente alla terza parte di un angolo piatto. In un triangolo rettangolo, gli angoli acuti sono complementari. Quarto criterio di congruenza dei triangoli (o secondo generalizzato) Se due triangoli hanno ordinatamente congruenti un lato e due angoli qualsiasi, allora sono congruenti. Criterio di congruenza dei triangoli rettangoli Due triangoli rettangoli sono congruenti se hanno ordinatamente congruenti, oltre all’angolo retto, due lati oppure un lato e un angolo. In un triangolo rettangolo, la mediana relativa all’ipotenusa è congruente a metà dell’ipotenusa stessa. Luogo geometrico (definizione) Si dice luogo geometrico l’insieme di tutti e solo i punti che godono di una data proprietà. Asse di un segmento (definizione) Si dice asse di un segmento la retta perpendicolare al segmento e passante per il suo punto medio. Il luogo dei punti di un piano equidistanti da due punti dati è l’asse del segmento che ha per estremi quei due punti. Il luogo dei punti di un piano equidistanti dai lati di un angolo è la bisettrice di quell’angolo. Parallelogramma (definizione) Si dice parallelogramma un quadrilatero avente i lati opposti paralleli. Proprietà dei parallelogrammi In ogni parallelogramma: i lati opposti sono congruenti; gli angoli opposti sono congruenti e gli angoli adiacenti a ciascun lato sono supplementari; le diagonali si dimezzano scambievolmente a metà. Criteri per stabilire quando un quadrilatero è un parallelogramma Un quadrilatero è un parallelogramma se vale almeno uno dei seguenti: ha due coppie di lati opposti congruenti; ha due coppie di angoli opposti congruenti; ha due coppie di angoli adiacenti allo stesso lato supplementari; ha le diagonali che si dimezzano scambievolmente a metà; ha una coppia di lati opposti paralleli e congruenti. Rettangolo (definizione) Si dice rettangolo un parallelogramma avente i quattro angoli retti. Proprietà dei rettangoli In ogni rettangolo le diagonali sono congruenti. Criteri per stabilire quando un parallelogramma è un rettangolo Un parallelogramma è un rettangolo se ha le diagonali congruenti. Rombo (definizione) Si dice rombo un parallelogramma avente i quattro lati congruenti. Proprietà dei rombi In ogni rombo: le diagonali sono perpendicolari tra loro; le diagonali sono bisettrici dei vertici. Criteri per stabilire quando un parallelogramma è un rombo Un parallelogramma è un rombo se vale almeno uno dei seguenti: ha le diagonali perpendicolari tra loro; ha almeno un angolo che ha per bisettrice una diagonale. Quadrato (definizione) Si dice quadrato un parallelogramma che è sia rettangolo che rombo. Trapezio (definizione) Si dice trapezio un quadrilatero avente due lati opposti paralleli. Trapezio isoscele (definizione) Un trapezio si dice isoscele se ha i lati obliqui congruenti. Proprietà dei trapezi isosceli In ogni trapezio isoscele: gli angoli alla base sono congruenti e gli angoli adiacenti ai lati obliqui sono supplementari; le diagonali sono congruenti. Criteri per stabilire quando un trapezio è isoscele Un trapezio è isoscele se vale almeno uno dei seguenti: ha gli angoli alla base congruenti; ha gli angoli adiacenti ai lati obliqui supplementari; ha le diagonali congruenti. Diagramma dei quadrilateri QUADRILATERI TRAPEZI PARALLELOGRAMMI ROMBI QUADRATI RETTANGOLI