Tori Non Commutativi - Dipartimento di Matematica e Fisica

annuncio pubblicitario
Tori Non Commutativi
Francesca Arici
Brescia, 17 Novembre 2010
Abstract
La dualità tra algebra e geometria costituisce una delle idee più feconde
e più antiche della matematica. Con il teorema di Gelfand e Naimark, che
andremo ad enunciare, si instaura una sorta di corrispondenza tra spazi
geometrici ed algebre ad essi associati. Questo risultato permette di applicare metodi di analisi funzionale allo studio delle proprietà topologiche
e geometrico-differenziali di uno spazio: è il punto di partenza della cosiddetta geometria non commutativa.
In questo seminario andremo a studiare lo spazio delle orbite dell’azione
per traslazione degli interi sul cerchio S 1 , utilizzando da un lato il gruppoide associato a tale azione e dall’altro la corrispondente algebra crossed
product. Tale algebra prende il nome di toro non commutativo e rappresenta il più semplice e più studiato esempio di spazio non commutativo. Come vedremo esso può essere visto come una sorta di deformazione
dell’algebra delle funzioni lisce sul 2 toro T2 . Tale costruzione ammette
generalizzazione a dimensioni superiori, parleremo allora di tori non commutativi n-dimensionali.
Daremo infine un breve accenno ai vari punti di vista sotto cui tali
spazi possono essere studiati, ponendo in particolare l’accento sullo studio
di operatori differenziali come il laplaciano.
1
Scarica
Random flashcards
CRANIO

2 Carte oauth2_google_d7270607-b7ab-4128-8f55-c54db3df9ba1

Prova Lavoro

2 Carte nandoperna1

biologia

5 Carte patty28

DOMENICA 8 DICEMBRE

4 Carte oauth2_google_6fa38c4a-fb89-4ae3-8277-fdf97ca6e393

il condizionale

2 Carte oauth2_google_2e587b98-d636-4423-a451-84f012b884f0

creare flashcard