Esercizio (statistica di una variabile) Guardiamo questo diagramma

Esercizio (statistica di una variabile)
Guardiamo questo diagramma
a barre relativo al "numero
di scarpe" di alcune ragazze.
Rispondiamo alle domande:
Quante sono in tutto le ragazze?
Qual è il "numero" mediano?
Qual è il "numero" medio?
Qual è la frequenza relativa del 39?
Esercizio (statistica di due variabili).
In una scuola ci sono 600 alunni; 350 di esse sono ragazze.
Alcune ragazze, 280, hanno un profilo Instagram; le altre no.
Invece, solo 90 maschi hanno un profilo Instagram.
a) completate la tabella di contingenza delle frequenze
osservate.
b) calcolate la tavola delle frequenze attese
c) calcolate il consuntivo Chi Quadrato e trovate il P value
d) decidete se vi è una differenza di genere, ossia se il
genere è associato ad avere una preferenza per il profilo su
Instagram. Oppure, che no, che si tratta di due caratteri
statistici indipendenti.
e) con un dispositivo digitale, eseguite il test esatto di Fisher,
verificando la risposta d).
Esercizio. Un medico dentista ha visitato 100 pazienti con
la carie e 100 pazienti senza la carie. Egli ha osservato che
95 pazienti che avevano la carie riferivano un forte dolore di
denti.Viceversa, c'erano 35 pazienti che non avevano la carie
ma avevano forte dolore.
In base a queste informazioni, stimiamo:
La probabilità (condizionata) di avere forte dolore se si ha
una carie.
La probabilità (condizionata) di avere una carie se si ha forte
dolore.
Decidete con un test esatto di Fisher, oppure con il test del
Chi Quadrato a vostra scelta, se queste due probabilità si
equivalgono in senso statistico, oppure se sono diverse. In
altre parole, decidete se il forte dolore è associato alla carie
o sono indipendenti.
Soluzioni.
Le ragazze sono in tutto 2 + 4 + 5 + 3 + 1 = 15. Per trovare il numero di scarpe mediano, essendo che la metà di 15
è circa 7, scartiamo le sette con le scarpe più piccole e le sette con le scarpe più grandi. La mediana è il 39.
Il numero medio è:
La frequenza relativa del numero 39 è 5/15, ossia il 33%.
##################
Completiamo la tavola di contingenza delle frequenze osservate e calcoliamo le frequenze attese con le
proporzioni:
Calcoliamo ora il consuntivo/quantile:
Il consuntivo/quantile Chi Quadrato è un numero talmente grande che non viene riportato nemmeno sui libri.
Quindi, il P value è praticamente uguale a 0. Pertanto possiamo affermare con (quasi assoluta) certezza che
profilo Instagram e genere sono significativamente associati: i caratteri statistici sono dipendenti. Lo conferma
anche l'immagine scattata al test di Fisher eseguito on-line.
####################