caricato da Utente13375

enti geometrici fodamentali (1)

VERIFICA DI GEOMETRIA
Nome e Cognome __________________________________ Classe I Data ____________
1 Vero o falso? Se falso correggi.
a Gli enti geometrici fondamentali sono: il
punto, la retta, il piano.
V F
b Il punto ha una dimensione.
V F
c La retta ha due dimensioni: la lunghezza e
lo spessore.
V F
d Il piano ha due dimensioni: la lunghezza e
la larghezza.
V F
e Per tre punti allineati passa una sola retta;
se i punti non sono allineati, non passa
alcuna retta.
V F
f
Per tre punti non allineati passa uno e un
solo piano.
V F
g La semiretta è ciascuna delle due parti in
cui una retta viene divisa da un suo punto
detto origine.
V F
2 Scegli il completamento corretto tra quelli proposti.
a Se tutti i punti di una retta appartengono a un piano si dice che:
il piano giace sulla retta
la retta giace nel piano
la retta è incidente al piano
b Se nessun punto di una retta è in comune a un piano si dice che:
la retta è esterna al piano
la retta è incidente al piano
la retta è perpendicolare al piano
c Se una retta ha un punto in comune con un piano si dice che:
la retta è esterna al piano
la retta è incidente al piano
la retta è parallela al piano
d Due rette che giacciono sullo stesso piano e non hanno punti in comune si dicono:
incidenti
parallele
perpendicolari
e Due rette che giacciono sullo stesso piano e hanno un punto in comune si dicono:
parallele
f
incidenti
coincidenti
Due rette che giacciono sullo stesso piano e hanno tutti i punti in comune si
dicono:
perpendicolari
coincidenti
parallele
3 Inserisci al posto dei puntini il completamento esatto.
a Il segmento è la parte di retta limitata da due suoi punti detti
segmento.
b Due segmenti si dicono
del
se hanno un estremo in comune.
dell’altro se lo contiene un numero intero di volte.
c Un segmento si dice
4 Scrivi, per ciascun caso, se la retta s è parallela, giacente, incidente o
perpendicolare al piano.
5 Disegna due segmenti consecutivi.
Disegna due segmenti adiacenti.
Disegna due segmenti paralleli.
Disegna due segmenti perpendicolari.
6 Inserisci il simbolo di <, >, = tra le seguenti coppie di segmenti.
AB
GH;
EF
IL;
CD
MN;
EF
AB.
7 Disegna le rette s ed r parallele tra loro e giacenti sul piano α.
Disegna le rette s ed r parallele tra loro e perpendicolari al piano α.
Disegna le rette s ed r perpendicolari tra loro e giacenti sul piano α.
Disegna una retta s incidente a un piano α e perpendicolare a un’altra retta r.