Lattice supersymmetry in one dimension with two supercharges Alessandra Feo Universitá di Torino and INFN Torino Sestri Levante 2008 Convegno Informale di Fisica Teorica Sestri Levante, June 4-6, 2008 Based on: Arianos, D’Adda, A.F., Kawamoto and Saito, arXiv:0806.0686 [hep-lat]; Arianos, D’Adda, Kawamoto and Saito, arXiv:0710.0487 [hep-lat] Introduction Sestri Levante 2008, Convegno Informale di Fisica Teorica 1 Lattice formulation of Super Yang-Mills theory: Problems • The major obstacle in formulating a supersymmetric theory on the lattice arises from the fact that the supersymmetry algebra, which is an extension of the Poincaré algebra, is explicitly broken on the lattice [Dondi and Nicolai 1977] . In particular, the Super Poincaré algebra is given by the anti-commutator of a supercharge Qα and its conjugate Qβ yields the generator of infinitesimal translations Pµ. Schematically, µ Pµ Qα, Q†β = 2σαβ On the lattice there are no infinitesimal translations and therefore the supersymmetry algebra must be broken. Sestri Levante 2008, Convegno Informale di Fisica Teorica 2 Ordinary Poincaré algebra is also broken by the lattice but the hypercubic crystal symmetry forbids relevant operators which could spoil the Poincaré symmetry in the continuum limit → The Poincaré invariance is achieved automatically in the continuum limit without fine tuning since operators that violate Poincaré invariance are all irrelevant. However, in the case of the super Poincaré algebra, the lattice crystal group is not enough to guarantee the absence of supersymmetry violating operators. Sestri Levante 2008, Convegno Informale di Fisica Teorica 3 Failure of the Leibniz rule On the lattice the Leibniz rule does not hold anymore. [Fujikawa, hepth/0205095] 1 (f (x + a)g(x + a) − f (x)g(x)) = a 1 1 = (f (x + a) − f (x))g(x) + f (x)(g(x + a) − g(x)) a a 1 1 +a (f (x + a) − f (x)) (g(x + a) − g(x)) a a = (∇f (x))g(x) + f (x)(∇g(x)) + a(∇f (x))(∇g(x)) the breaking of supersymmetry is of order O(a). Sestri Levante 2008, Convegno Informale di Fisica Teorica 4 • If the supersymmetric theory contains scalar mass terms they break supersymmetry. Since these operators are relevant fine tuning is needed in order to cancel their contributions. • A naive regularization of fermions results in the doubling problem [Nielsen and Ninomiya, 1981] → wrong number of fermions and violation of the balance between bosons and fermions Sestri Levante 2008, Convegno Informale di Fisica Teorica 5 Solutions • Without exact lattice supersymmetry one might hope to construct non-supersymmetric lattice theories with a supersymmetric continuum limit. This is the case of the Wilson fermion approach for the N = 1 supersymmetric Yang-Mills theory in 4d where the only operator that violates supersymmetry is a fermion mass term. By tunning the fermion mass to the supersymmetric limit one recovers supersymmetry in the continuum limit [Curci and Veneziano, 1987; I. Montvay, hep-lat/0112007, hep-lat/9510042; A.F., hep-lat/0305020; Taniguchi and Suzuki; Maru and Nishimura] In the case of theories with extended supersymmetries the fine tuning of coupling constant is neither feasible nor theoretically practical. Sestri Levante 2008, Convegno Informale di Fisica Teorica 6 – Alternatively, using domain wall fermions [Kaplan and Schmaltz hep-lat/0002030; Ginsparg and Wilson, 1982] or overlap fermions [Huet, Narayanan, Neuberger, hep-th/9602176] this fine tunning is not required [Fleming, Kogut and Vranas; Itoh, Kato and Sawanaka; Harada and Pinsky] Sestri Levante 2008, Convegno Informale di Fisica Teorica 7 • A number of approaches that allow to realize part of the supersymmetry as an exact symmetry on the lattice in certain class of theories with an extended supersymmetry have been proposed in recent years [Kaplan, Cohen, Katz and Unsal; Sugino; Catterall; Damgaard and Matsura; Giedt; Onogi, Ohta and Takimi] Two approaches: Orbifold methods. SYM case. Twisted formulations. This exact lattice supersymmetry is expected to play a key role to restore continuum supersymmetry without (or with less) fine tuning of the parameters of the action. Sestri Levante 2008, Convegno Informale di Fisica Teorica 8 • A more ambitious approach, aiming to preserve exactly all supersymmetries in some extended supersymmetric models (including N = 2 WessZumino, N = 2 SYM and N = 4 SYM), was also proposed [D’Adda, Kanamori, Kawamoto and Nagata, hep-lat/0406029; hep-lat/0409092; hep-lat/0507029; arXiv:0707.3533; arXiv:0709.0722] Here the key ingredient is the use of Dirac-Kähler fermions to overcome the doubling problem and most important the introduction of a mild non commutativity to preserve the Leibniz rule. Susy transformations on the lattice can be defined without ambiguity with the aid of the Modified Leibniz rule. – Recent claims of inconsistency of the formalism [Bruckmann and de Kok, hep-lat/0603003] will be discussed in this talk and shown to be baseless. Sestri Levante 2008, Convegno Informale di Fisica Teorica 9 – Other examples of lattice exact supersymmetry for a simpler model as Wess-Zumino (kinetic part) Golterman and Petcher, Bietenholz; Catterall, Karamov and Gregory; Fujikawa and Ishibashi; Fujikawa; Wipf; Giedt and Poppitz; Kato, Sakamoto and So; Beccaria, Campostrini and A.F.] – For the N = 1 Wess-Zumino model in 4 dimensions an exact lattice formulation have been achieved using the Ginsparg-Wilson formulation (also checked the Ward-Takahashi identity: exact at fixed lattice spacing and in the continuum limit at one loop order →The renormalization wave function of all fields coincide) [Bonini and A.F., hep-lat/0402034, hep-lat/0504010] Sestri Levante 2008, Convegno Informale di Fisica Teorica 10 Recent reviews 1. J. Giedt, hep-lat/0701006, (Plenary talk at Lattice 2006), “ Advances and applications of lattice supersymmetry”. 2. S. Catterall, hep-lat/0509136, (Plenary talk at Lattice 2005), “DiracKahler fermions and exact lattice supersymmetry”. 3. A. F., hep-lat/0410012, (Review for MPLA), “ Predictions and recent results in SUSY on the lattice’ 4. D. B. Kaplan, hep-lat/0309099, (Plenary talk at Lattice 2003), “Recent developments in lattice supersymmetry”. 5. A. F., hep-lat/0210015, (Plenary talk at Lattice 2002), “Supersymmetry on the lattice” 6. I. Montvay, hep-lat/0112007, (Review), “Supersymmetric Yang-Mills theory on the lattice” 7. I. Montvay, hep-lat/9709080, (Plenary talk at Lattice 1997), “SUSY on the lattice” Sestri Levante 2008, Convegno Informale di Fisica Teorica 11 Plan of the Talk Example of exact lattice supersymmetry for all supersymmetries Lattice formulation of N = 2 susy model in one dimension [Arianos, D’Adda, Kawamoto and Saito, arXiv:0710.0487] • Modified Leibniz rule • Modified Ward-Takahashi identities [Arianos, D’Adda, A.F., Kawamoto and Saito, arXiv:0806.0686] Discussion of some recent claims of inconsistency. Sestri Levante 2008, Convegno Informale di Fisica Teorica 12 The N = 2 Supersymmetric Model in 1d: Continuum The model we are going to discuss is the supersymmetric quantum mechanics with two supersymmetry charges that have the following algebra Q21 = Q22 = Px , {Q1, Q2 } = 0, Px = [Px, Q1 ] = [Px, Q2] = 0 ∂ . ∂x A superspace representation of the algebra may be given in terms of two Grassmann odd, real coordinates θ1 and θ2 , namely: Q1 = ∂ ∂ + θ1 , ∂θ1 ∂x Q2 = ∂ ∂ + θ2 . ∂θ2 ∂x The field content of the theory is described by a hermitian superfield Φ(x, θ1, θ2 ): Φ(x, θ1 , θ2 ) = ϕ(x) + θ1 ψ1(x) + θ2 ψ2(x) + θ1 θ2 F (x), where ψ1 and ψ2 are Majorana fermions. Sestri Levante 2008, Convegno Informale di Fisica Teorica 13 The supersymmetry transformations of the superfield Φ are given by δj Φ = [ηj Qj , Φ] j = 1, 2 where ηi are the Grassmann odd parameters of the transformation. In terms of the component fields the susy transformations reads, δj ϕ = iηj ψj δj ψk = iδj,k ηj ∂x ϕ + ǫjk ηj F δj D = −ǫjk ηj ∂xψk Supersymmetry transformations of superfields products obey ordinary Leibniz rule δi(Φ1 Φ2 ) = (δiΦ1 )Φ2 + Φ1 (δiΦ2 ) To construct the action we need to introduce the superderivatives, Dj = ∂ ∂ − θj . ∂θj ∂x which anticommute with the supersymmetry charges Qj and satisfy the algebra ∂ Dj2 = − {D1, D2 } = 0 ∂x Sestri Levante 2008, Convegno Informale di Fisica Teorica 14 The supersymmetric action can then be defined in terms of the superfield Φ as Z 1 dxdθ1 dθ2 D1ΦD2 Φ + iV (Φ) 2 where the superpotential is defined as V (Φ) = 1 1 mΦ2 + gΦ4 2 4 the action written in terms of the component fields is Z 1 2 2 S = dx{ (∂x ϕ) − F − ψ1∂x ψ1 − ψ2∂x ψ2 2 −m(iψ1 ψ2 + F ϕ) − g(3iϕ2ψ1ψ2 + F ϕ3 )} Sestri Levante 2008, Convegno Informale di Fisica Teorica 15 Matrix Representation and Modified Leibniz Rule Consider a one dimensional lattice with N sites and periodic boundary conditions. Let a be the lattice spacing. The N sites of the lattice will be labeled by a coordinate x = ra. L is the lattice size, L = aN . And a scalar field ϕ on the lattice defined by a set on N numbers ϕr (r = 1, 2, · · · , N ), ϕ(x) = ϕ(ra) ≡ ϕr . The N numbers ϕr can be regarded as the matrix ϕ: ϕ1 0 0 0 0 ϕ2 0 0 0 ϕ3 0 ϕ=0 ... ... ... ... 0 0 0 0 eigenvalues of an N × N diagonal ··· ··· ··· ... ··· 0 0 0 ... ϕN whose rows and columns are in one to one correspondence with the sites of the lattice. Derivatives are replaced on the lattice by finite differences (∂+ ϕ)r = (ϕr − ϕr−1 ) . Sestri Levante 2008, Convegno Informale di Fisica Teorica 16 In matrix notation finite differences may be represented using the trices ∆+ and ∆− : 0 0 0 ··· 0 1 0 0 ··· 0 1 0 0 · · · 0 0 1 0 · · · 0 0 1 0 · · · 0 0 0 1 · · · 0 −1 = , ∆ = ∆ ∆+ = .. .. .. .. . . 0 0 1 · · · − . + . .. . . . . ... ... ... . . . 0 0 0 0 · · · 1 0 0 0 ··· 1 0 0 0 ··· 0 shift ma0 0 0 0 ... 1 1 0 0 0 ... 0 namely, in components (∆+ )rs = δr,s−1 , (∆− )rs = δr,s+1 . Sestri Levante 2008, Convegno Informale di Fisica Teorica 17 In the continuum the derivative ∂ϕ is just the commutator [∂, ϕ]; on the lattice however the commutator [∆+ , ϕ] is not diagonal. In order to write a diagonal matrix we have to defined it as ϕ1 − ϕN 0 0 (∂+ ϕ) = ∆− [∆+ , ϕ] = ... 0 0 0 0 ··· ϕ2 − ϕ1 0 0 ··· 0 ϕ3 − ϕ2 0 · · · ... ... ... . . . 0 0 0 ··· 0 0 0 ... ϕN − ϕN −1 The factor ∆− in front of the commutator is responsible for the violation of the Leibniz rule, in fact we have: (∂+ ϕψ) = (∂+ ϕ)ψ + ∆− ϕ∆+ (∂+ ψ) The factor ∆− ϕ∆+ is a shifted field equivalent to (∆− ϕ∆+ ) = ϕr−1 . The modified Leibniz rule reflects the fact that translational symmetry on the lattice is a discrete, and not continuous symmetry. Sestri Levante 2008, Convegno Informale di Fisica Teorica 18 Consider an action given as the trace of a product of fields ϕi, S = Tr ϕ1 ϕ2 · · · ϕr The trace corresponds to the sum over all lattice sites, and translational invariance can be simply expressed as the invariance of the action under ϕi → ∆− ϕi ∆+ = ϕi + δϕi where δϕi = −(∂+ ϕ). The variation of the Lagrangian can be cast in the form: δ (ϕ1 ϕ2 · · · ϕr ) = (δϕ1 )ϕ2 · · · ϕr−1 ϕr + (ϕ1 + δϕ1 )(δϕ2)ϕ3 · · · ϕr + · · · +(ϕ1 + δϕ1 )(ϕ2 + δϕ2) · · · (ϕr−1 + δϕr−1 )(δϕr ) which is again the modified Leibniz rule. The linear terms in δϕi give the ordinary Leibniz rule typical of the continuum limit. The situation is different in susy because supersymmetry charges are non diagonal and hence supersymmetry transformations of a product of superfields obey a modified Leibniz rule on the lattice. Sestri Levante 2008, Convegno Informale di Fisica Teorica 19 If δα is the supersymmetry variation generated by the SUSY charge Qα and and Φi(θ, x) (i = 1, 2) are superfields, the shift aα associated to Qα will determine the modified Leibniz rule: δα (Φ1(θ, x)Φ2 (θ, x)) = (δαΦ1(θ, x)) Φ2 (θ, x) + Φ1(θ, x + aα) (δαΦ2 (θ, x)) However, these modified Leibniz rule can not be derived (in this present formulation) from a field transformation as ϕi → ∆− ϕi ∆+ = ϕi + δϕi. The conseguences: The action will be invariant under the susy trasformations given above using the modified Leibniz rule for a product of fields. Sestri Levante 2008, Convegno Informale di Fisica Teorica 20 Matrix Representation of a Grassmann Algebra In order to define the N = 2 supersymmetric quantum mechanics on a one dimensional lattice it is convenient to introduce a matrix representation for the two Grassmann variables θ1 and θ2 θ1 ≡ σ+ ⊗ 1 ⊗ ∆+ , ∂ ≡ σ− ⊗ 1 ⊗ ∆− , ∂θ1 θ2 ≡ σ3 ⊗ σ+ ⊗ ∆− , ∂ ≡ σ3 ⊗ σ− ⊗ ∆+ ; ∂θ2 or explicitly 0 0 θ1 ≡ 0 0 0 ∆+ 0 0 0 0 0 0 0 0 ∂ 0 0 ≡ ∆− 0 ∂θ1 0 ∆− 0 ∆+ 0 0 0 0 0 0 0 0 0 0 0 ∆− 0 0 θ2 ≡ 0 0 0 0 0 ∂ ∆ ≡ + 0 ∂θ2 0 where the entries are matrices N × N matrices. Sestri Levante 2008, Convegno Informale di Fisica Teorica 0 0 0 0 0 −∆− 0 0 0 0 0 0 0 0 0 −∆+ 0 0 0 0 21 Fields and Superfields The next ingredient we need in order to construct a supersymmetric lattice theory is a matrix representation of the fields. As usual we deal with bosonic fields, fermionic fields and superfields, defined as follows, • Bosonic field: a field which commutes with all θ’s and ϕ 0 0 0 0 ∆+ ϕ∆− ϕ̂ ≡ 0 0 ∆− ϕ∆+ 0 0 0 ∂ ’s. ∂θ ϕ ≡ N × N matrix θiϕ̂ = ϕ̂θi ∂ ∂ ϕ̂ = ϕ̂ ∂θi ∂θi 0 0 0 ϕ • Fermionic field: a field which anticommutes with all θ’s and ψ 0 0 0 0 0 0 −∆+ψ∆− ψ̂ ≡ 0 0 −∆−ψ∆+ 0 0 0 0 ψ ∂ ’s. ∂θ ψ ≡ N × N fermionic matrix θi ψ̂ = −ψ̂θi ∂ ∂ ψ̂ = −ψ̂ ∂θi ∂θi Sestri Levante 2008, Convegno Informale di Fisica Teorica 22 • Superfield: a field which commutes with all θ’s but not with a standard expansion in powers of θ’s: ∂ ’s. ∂θ It has Φ = ϕ̂ + θ1 ψ̂1 + θ2 ψ̂2 + θ1θ2 F̂ . In our matrix representation it can be written as ϕ −ψ2∆− −ψ1∆+ −F 0 ∆+ ψ1 0 ∆+ϕ∆− . Φ= 0 0 ∆− ϕ∆+ −∆− ψ2 0 0 0 ϕ The building blocks of the model are the matrices without hat ϕ, ψ1, ψ2, F . To describe a one dimensional lattice of size N we need to apply to Φ an orbifold condition. The conditions over the components fields requires that, ϕ and F are diagonal matrices while ψ1 = ∆− ψ̃1 and ψ2 = ∆+ ψ̃2 . Sestri Levante 2008, Convegno Informale di Fisica Teorica 23 Supercharges and susy transformations The two supercharges of the N = 2 supersymmetric quantum mechanics are given in the continuum theory by Qi = ∂ ∂ + θi ∂θi ∂t As we assigned to θi a shift operator corresponding to one lattice unit, the time derivative ∂t will be associated on the lattice to the two units shift operator ∆2± . The correspondence between continuum and lattice operators is ∂t → N ∆2± The supercharges on the lattice are defined without ambiguity as ! 0 0 N∆ 0 ∂ ˆ 2− = Q1 = + N θ1 ∆ ∂θ1 Q2 = ∂ ˆ 2+ = + N θ2 ∆ ∂θ2 0 ∆− 0 0 ∆+ 0 0 0 0 ∆− N ∆+ 0 0 0 Sestri Levante 2008, Convegno Informale di Fisica Teorica 0 0 0 − 0 0 0 −∆+ N ∆− 0 0 , 0 0 −N ∆+ 0 ! . 24 Q1 and Q2 satisfy the algebra of supersymmetric quantum mechanics written in Majorana representation ˆ 2− , Q21 = N ∆ {Q1 , Q2 } = 0 , ˆ 2+ , Q22 = N ∆ [Q1, 2, ∆±] = 0 . Supersymmetry transformations are naively obtained by taking the commutator of Q1 and Q2 with Φ. However, for consistency we want the supersymmetry variations of Φ to commute with Ω, just like Φ, and also to commute with all the θ’s. This is obtained by defining ˆ + [Q1, Φ] , δ1Φ = η̂1 ∆ ˆ − [Q2, Φ] , δ2Φ = η̂2∆ where 1 0 0 0 −1 0 η̂1 = η1 0 0 −1 0 0 0 0 0 , 0 1 1 0 0 0 −1 0 η̂2 = η2 0 0 −1 0 0 0 0 0 0 1 and η1, η2 are odd Grassmann parameters: ηi ψj = −ψj ηi ∀ i, j = 1, 2 . Sestri Levante 2008, Convegno Informale di Fisica Teorica 25 The susy variation of a product of two superfields follows a modified Leibniz rule. For instance, we consider the variation under Q1 : δ1(Φ1 Φ2) = η̂1∆+ [Q1, Φ1 Φ2 ] = (δ1Φ1 )Φ2 + (∆+ Φ1∆− )δ1Φ2 where ∆+ Φ1 ∆− is a shifted superfield. Similar expresion can be obtain for variations under Q2 . Sestri Levante 2008, Convegno Informale di Fisica Teorica 26 By doing explicit matrix computations we obtain, in terms of component fields δ1ϕ = η1 ∆+ ψ1 , δ1ψ1 = −η1 N ∆+ [∆2− , ϕ] , δ1F = η1 N ∆+ [∆2−, ψ2 ] , δ1ψ2 = −η1 ∆+ F . and δ2 ϕ = η2 ∆− ψ2 , δ2ψ1 = η2 ∆− F , δ2F = −η2N ∆− [∆2+ , ψ1 ] , δ2ψ2 = −η2N ∆− [∆2+ , ϕ] . These susy transformations close the algebra. Sestri Levante 2008, Convegno Informale di Fisica Teorica 27 The Inconsistency Claimed [Bruckmann and de Kok, hep-lat/0603003; Bruckmann, Catterall and de Kok, hep-lat/0611001] claim an inconsistency in the lattice formulation: Consider the action written in terms of the component fields is Z 1 2 2 S = dx{ (∂x ϕ) − F − ψ1∂x ψ1 − ψ2∂x ψ2 2 −m(iψ1 ψ2 + F ϕ) − g(3iϕ2ψ1ψ2 + F ϕ3 )} When one applies the susy transformation to a product of fields, as for example: δs(F (x)ϕ(x)) = (δsF (x))ϕ(x) + F (x + a)(δsϕ(x)) the result is not equal to the one when is applied to δs(ϕ(x)F (x)) = (δsϕ(x))F (x) + ϕ(x + a)δsF (x) and it might give wrong results. Sestri Levante 2008, Convegno Informale di Fisica Teorica 28 The action Here our aim is to construct a matrix (lattice) action which reproduces action of the continuum limit. Introduce the covariant derivatives D1 and D2 , ∂ ∂ ˆ 2− , ˆ 2+ . D2 = − N θ1 ∆ − N θ2∆ ∂θ1 ∂θ2 which anticommutes with all the supercharges and also ˆ 2+ . ˆ 2− , D22 = −N ∆ D12 = −N ∆ D1 = (1) A suitable candidate for our matrix action is the following ∂ ∂ 1 S = Tr , , [D1, Φ][D2, Φ] + iF (Φ) ∂θ2 ∂θ1 2 This action is invariant under the supersymmetry transformations. The action written in terms of the component fields is Skin ∝ Tr − N ψ1[∆2+ , ψ1] − F 2 − N 2[∆2−, ϕ][∆2+ , ϕ] + N [∆2−, ψ2]ψ2 i + m(−ϕF − F ϕ − ψ2ψ1 + ψ1ψ2) 2 Sestri Levante 2008, Convegno Informale di Fisica Teorica 29 The kinetic term of the action written in components as Skin = Tr − N ψ1∆2+ ψ1 + N ψ1ψ1∆2+ − F 2 − N 2∆2− ϕ∆2+ ϕ + N 2 ∆2− ϕϕ∆2+ + N 2ϕ2 − N 2ϕ∆2− ϕ∆2+ + N ∆2− ψ2ψ2 − N ψ2∆2− ψ2 i + m(−ϕF − F ϕ − ψ2ψ1 + ψ1ψ2) 2 where the order of the factors in each term has been preserved. On the lattice reads (g = 0), Skin = a X 1 x a2 − ϕ(x)ϕ(x + 2a) − ϕ(x)ϕ(x − 2a) + 2ϕ2(x) − F 2 (x) 1 1 + ψ1(x) ψ1(x − a) − ψ1(x + a) + ψ2(x) ψ2(x + a) − ψ2(x − a) a a i + m(−ϕ(x)F (x) − F (x)ϕ(x) − ψ2(x + a)ψ1(x) + ψ1(x − a)ψ2(x)) 2 Sestri Levante 2008, Convegno Informale di Fisica Teorica 30 • This action has the correct continuum limit and satisfy the requirement of reflection positivity [Osterwalder, Schrader, 1973,1975; Lüscher, 1977] which means that is bounded, symmetric and positive operator. The positivity is essential for the existence of a self-adjoint Hamiltonian. • Once the reflection positivity is taking into account the point is that, the objections raised by [Bruckmann and de Kok, hep-lat/0603003] do not have any meaning since, although the Modified Leibniz rule (MLR) may be apply differently in some terms when the order is interchanged, in the case of a physical theory, there is only one way to write an action that satisfy the reflection positivity. • An important point is that only the action above is invariant under the MLR. Sestri Levante 2008, Convegno Informale di Fisica Teorica 31 Using the Modified Leibniz rule (MLR) we can show that the lattice action is invariant under the SUSY transformations, if one uses the modified Leibniz rule for product of fields: δ1(A(x)B(x)) = (δ1A(x))B(x) + A(x + a)(δ1B(x)) M LR S = 0. → δ1,2 While, using the “normal” Leibniz rule (LR) we can show that the action is not invariant under the SUSY transformations due to the fact that the action does not satisfy the invariance ϕA → ϕA + δϕA . LR S 6= 0 . → δ1,2 SUSY breaking Sestri Levante 2008, Convegno Informale di Fisica Teorica 32 The Ward-Takahashi identities The question is to understand whether this exact lattice supersymmetry is preserved at the quantum level. Sestri Levante 2008, Convegno Informale di Fisica Teorica 33 Definition of the source term and Ward identities Let us define the source term needed to construct the Ward identities. Z SJ = dθ1 dθ2 T r(JΦΦ) , Z = dθ1 dθ2 T r Jˆ0(ϕ̂ + θ1ψ̂1 + θ2 ψ̂2 + θ1 θ2F̂ ) Jˆ1 (θ1ϕ̂ + θ12ψ̂1 + θ1 θ2 ψ̂2 + θ12 θ2F̂ ) Jˆ2 (θ2ϕ̂ + θ2θ1 ψ̂1 + θ22 ψ̂2 + θ2θ1 θ2 F̂ ) where Jˆ12 (θ1 θ2ϕ̂ + θ1θ2 θ1 ψ̂1 + θ1θ22 ψ̂2 + θ1 θ2θ1 θ2 F̂ ) = T r Jˆ0 + Jˆ1 ψ̂2 − Jˆ2ψ̂1 + Jˆ12 ϕ̂ , Φ = ϕ̂ + θ1 ψ̂1 + θ2ψ̂2 + θ1 θ2 F̂ and JΦ = Jˆ0 + θ1Jˆ1 + θ2Jˆ2 + θ1θ2 Jˆ12 , Sestri Levante 2008, Convegno Informale di Fisica Teorica 34 where Jˆ0 = J0 0 0 0 ! 0 ∆+ J0∆− 0 0 , 0 0 ∆− J0∆+ 0 0 0 0 J0 Jˆ12 = J12 0 0 0 ∆+ J12 ∆− 0 0 0 ∆− J12∆+ 0 0 0 0 ! 0 , 0 J12 Jˆi = Ji 0 0 0 −∆+ Ji∆− 0 0 0 −∆−Ji∆+ 0 0 0 0 ! 0 , 0 Ji where J0 = J˜0I , J12 = J˜12 I , J1 = J˜1 ∆− , Sestri Levante 2008, Convegno Informale di Fisica Teorica J2 = J˜2∆+ . 35 The source term is SJ = T r JJ 0 0 0 0 0 ∆+ JJ∆− 0 0 ∆− JJ∆+ 0 0 0 ! 0 , 0 JJ where JJ ≡ (J˜0 F + J˜1 ∆− ψ2 − J˜2∆+ ψ1 + J˜12ϕ) . The generating functional is defined as Z= where Z DΦ exp(−Ssusy + SJ ) SJ = JϕA ϕA . Let us make a change of variables ϕA → ϕA + δϕA Sestri Levante 2008, Convegno Informale di Fisica Teorica 36 where the measure is invariant: DϕA = D(ϕA + δϕA )) and Z Z= DϕA exp − Ssusy (ϕA + δϕA ) + SJ (ϕA + δϕA) Z = DϕA exp(−Ssusy (ϕA) + SJ (ϕA)) exp(−δSsusy + JϕA δϕA ) where we defined δSsusy ≡ Ssusy (δϕA ) then, DϕA exp(−Ssusy + SJ )(1 − δSsusy + JϕA δϕA) −→ Z Z = Z + DϕA exp(−Ssusy + SJ )(−δSsusy + JϕA δϕA ) Z= that means Zδ ≡ Z Z DϕA exp(−S + SJ )(−δS + δSJ ) = 0 , Sestri Levante 2008, Convegno Informale di Fisica Teorica δSJ = JϕA δϕA 37 A two point Ward identity is obtained by taking the derivative on two sources and then taking to zero all of them. For example, δ2 δ J˜12(r)δ J˜2 (s) which gives a two point Ward identity are: Z Dϕ exp(−S) − ∆+ ψ1(s)δ1ϕ(r) − ϕ(r)δ1 (∆+ ψ1(s))] 1 + [∆+ ψ1(s)ϕ(r) + ϕ(r)∆+ ψ1(s)](δ1(LR)S) = 0 , 2 or equivalently, < −∆+ ψ1(s)δ1ϕ(r) > − < ϕ(r)δ1 (∆+ ψ1(s)) > 1 + < [∆+ ψ1(s)ϕ(r) + ϕ(r)∆+ ψ1(s)](δ1(LR)S) >= 0 , 2 Although these Ward identities are satisfied on the lattice (to tree level), they do not represent a symmetry of the action because here δ1,2S is different from zero. Sestri Levante 2008, Convegno Informale di Fisica Teorica 38 Two point Modified Ward Identities What we propose are Modified Ward identities that mimics the modified M LR S = 0. Leibniz rule and uses the fact that δ1,2 < δ1M LR (∆+ ψ1(s)ϕ(r) + ϕ(r)∆+ ψ1(s)) >= 0 , more explicitly, < δ1(∆+ ψ1 (s))ϕ(r) > + < (∆+ ∆+ ψ1(s)∆−)δ1ϕ(r) > + < δ1ϕ(r)∆+ ψ1(s) > + < (∆+ ϕ(r)∆− )δ1ψ1 (s) >= 0 . Let us use (s → x, r → y) and ψ1 = ∆− ψ̃1 =< δ1(∆+ ψ1 (x))ϕ(y) > + < (∆2+ ψ1(x)∆− )δ1ϕ(y) > + < δ1ϕ(y)∆+ ψ1(x) > + < (∆+ ϕ(y)∆− )δ1 ψ1(x) >= = − < (∆+ η1 N ∆+ [∆2−, ϕ(x)])ϕ(y) > + < (∆2+ ψ1(x)∆− )(η1∆+ ψ1(y)) > + < (η1 ∆+ ψ1(y))(∆+ ψ1(x)) > − < (∆+ ϕ(y)∆− )(∆+ η1 N ∆+ [∆2− , ϕ(x)]) > Sestri Levante 2008, Convegno Informale di Fisica Teorica 39 = η1 − N < ϕ(x)ϕ(y) > +N < ϕ(x + 2a)ϕ(y) > − < ψ̃1 (x + a)ψ̃1(y) > + < ψ̃1(y)ψ̃1(x) > −N < ϕ(y + a)ϕ(x) > +N < ϕ(y + a)ϕ(x + 2a) > and in Fourier transform, we have Z Z 1 dk dt = η1 − < ϕ̃(k)ϕ̃(t) > (1 − exp(2ika)) exp(ikx) exp(ity) a (2π) (2π) Z Z dp dq <˜ψ1(p)˜ψ1(q) > exp(ipa) exp(ipx) exp(iqy) − Z Z (2π) (2π) dp dq + <˜ψ1(p)˜ψ1(q) > exp(ipy) exp(iqx) (2π) (2π) Z Z 1 dk dt − < ϕ̃(k)ϕ̃(t) > exp(ika)(1 − exp(2ita)) exp(iky) exp(itx) a (2π) (2π) substituting the propagators Sestri Levante 2008, Convegno Informale di Fisica Teorica 40 = η1 − Z Z 1 dt exp(−ita)(exp(ita) − exp(−ita)) exp(−it(x − y)) 4 2 (2π) a2 sin (ta) 2i dq − a sin(qa) exp(−iqa) exp(−iq(x − y)) 4 2 (2π) a2 sin (qa) 2i dq − a sin(qa) exp(iq(x − y)) + 4 2 (2π) a2 sin (qa) Z dt 1 (exp(−ita) − exp(ita)) exp(−it(x − y)) = 0 − (2π) a42 sin2(ta) Z due to, (exp(ita) − exp(−ita)) = 2i sin(ta) . All the other modified Ward-Takahashi identities that are different from zero in the kinetic term of the action (g = 0, m = 0) are satisfied at fixed lattice spacing (to tree level). Sestri Levante 2008, Convegno Informale di Fisica Teorica 41 The mass term The mass term (for g = 0) in the action X 1 Skin = a − ϕ(x)ϕ(x + 2a) − ϕ(x)ϕ(x − 2a) + 2ϕ2(x) − F 2 (x) 2 a x 1 1 + ψ1(x) ψ1(x − a) − ψ1(x + a) + ψ2(x) ψ2(x + a) − ψ2(x − a) a a i + m(−ϕ(x)F (x) − F (x)ϕ(x) − ψ2(x + a)ψ1(x) + ψ1(x − a)ψ2(x)) 2 is also invartiant under the modifield Leibniz rule, i.e., M LR Sint = 0 δ1,2 and also the two points Ward-Takahashi identities are satisfied, for example, < δ1M LR (F (x)(∆+ ψ1(y)) + (∆+ ψ1(y))F (x)) >= =< δ1F (x)(∆+ ψ1(y)) + (∆+ F (x)∆− )δ1(∆+ ψ1(y)) > + < δ1(∆+ ψ1(y))F (x) + (∆+ ∆+ ψ1(y)∆− )δ1 F (x) >= 0 Sestri Levante 2008, Convegno Informale di Fisica Teorica 42 Interaction term Up to now we show that the two points Ward-Takahashi identities are satisfied to tree level. Let us now check whether it holds also at one loop (g order). The superpotential is given by V (Φ) = 1 1 mΦ2 + gΦ4 2 4 and gives a symmetric piece: 1 g(ϕ(x)3 F (x) − ϕ(x)2 F (x)ϕ(x) − ϕ(x)F (x)ϕ(x)2 − F (x)ϕ(x)3 4 − ϕ(x)2 ψ̃2(x + a)ψ̃1(x) + ϕ(x)2 ψ̃1(x − a)ψ̃2(x) − ψ̃2(x + a)ψ̃1(x)ϕ(x)2 ψ̃1(x − a)ψ̃2(x)ϕ(x)2 − ϕ(x)ψ̃2 (x + a)ϕ(x + a)ψ̃1(x) − ϕ(x)ψ̃2(x + a)ψ1(x)ϕ(x) − ψ̃2(x + a)ϕ(x + a)2ψ̃1(x) − ψ̃2(x + a)ϕ(x + a)ψ̃1(x)ϕ(x) + ϕ(x)ψ̃1 (x − a)ϕ(x − a)ψ̃2(x) + ϕ(x)ψ̃1(x − a)ψ̃2(x)ϕ(x) + ψ̃1(x − a)ϕ(x − a)2ψ̃2(x) ψ̃1(x − a)ϕ(x − a)ψ̃2(x)ϕ(x)) (1) Sint = Sestri Levante 2008, Convegno Informale di Fisica Teorica 43 A two point Ward identity is < δ1M LR (F (x)(∆+ ψ1 (y)) + (∆+ ψ1(y))F (x)) >= 0 and can be written to order g as < (ψ̃2(x) − ψ2(x + 2a))ψ̃1(y) >(1) − < F (x + a)(ϕ(y) − ϕ(y + 2a)) >(1) − < (ϕ(y) − ϕ(y + 2a))F (x) >(1) − < ψ̃1(y + a)(ψ̃2(x) − ψ2(x + 2a)) >(1) = η1 ...work in progress... Sestri Levante 2008, Convegno Informale di Fisica Teorica 44 Conclusions A consistent formulation of a fully supersymmetric theory on the lattice has been a long standing challenge. We have shown, in the simple one dimensional example of N = 2 supersymmetric quantum mechanics, that supersymmetry transformations on the lattice can be defined without any ambiguity with the aid of the modified Leibniz rule if the superfield formalism is consistently used. The other problem we approached is the derivation of the Ward identities, At least in the case of the theory without interaction (but including the mass term) exact modified Ward identities hold, that reflect the modified Leibniz rule of the original symmetry. We expect that the situation of higher dimensional models will be similar. Sestri Levante 2008, Convegno Informale di Fisica Teorica 45