L’INFIAMMAZIONE INFIAMMAZIONE = risposta protettiva dei tessuti a stimoli endogeni o esogeni che provocano danno. Ha 2 obiettivi: 1. eliminare o contenere la causa del danno 2. riparazione dei tessuti danneggiati Infiammazione: ACUTA e CRONICA FLOGOSI ACUTA O ANGIOFLOGOSI E' LA REAZIONE DEL MICROCIRCOLO VASCOLARE CARATTERIZZATA DAL MOVIMENTO DI FLUIDI E LEUCOCITI DAL SANGUE AL TESSUTO EXTRAVASCOLARE. CAUSE: CHIMICHE, FISICHE, BIOLOGICHE MANIFESTAZIONI: RUBOR TUMOR DOLOR CALOR Le fasi dell infiammazione acuta Edema PMNs Monociti/Macrofagi RIPARAZIONE à (fibroblasti) Attivita 1 2 GIORNI 3 FENOMENI ALLA BASE DELLA ANGIOFLOGOSI: 1) IPEREMIA ATTIVA (ARTERIOLE, CAPILLARI, VENULE) - VASODILATAZIONE DELLE ARTERIOLE PRECAPILLARI E VASOCOSTRIZIONE DELLE VENULE POSTCAPILLARI –aumento flusso sg. E’ dovuta al rilascio di mediatori chimici vasoattivi (plasmatici o tessutali) - AUMENTO DELLA PERMEABILITA' DELLA BARRIERA ENDOTELIALE; STASI Filmato migrazione nel sito d infiammazione LA FAGOCITOSI INGLOBAMENTO ATTACCO Ossidasi citoplasmatica FORMAZIONE DEL FAGOLISOSOMA E DEGRANULAZIONE Granulo Formazione di radicali dell’ossigeno e ipoclorito Ossidasi di membrana Membran MEDIATORI CHIMICI DELL’INFIAMMAZIONE 1. DERIVATI DAI SISTEMI POLIMOLECOLARI SOLUBILI del plasma Sistema del complemento Sistema delle chinine Sistema della coagulazione - fibrinolisi 2. DERIVATI DA CELLULE, durante o dopo il reclutamento. Sono di tipo diverso: PREFORMATI Istamina Serotonina Ensimi lisosomiali DI NUOVA SINTESI Prostaglandine Leucotrieni PAF (fattore attivante le piastrine) Radicali liberi Ossido nitrico Citochine PATOGENESI PROCESSO INFIAMMATORIO DANNO Mediatori chimici 1. Modificazioni vascolari: vasodilatazione e aumentata permeabilità endoteliale: iperemia attiva 2. Eventi cellulari: passaggio di leucociti nel compartimento extravascolare (migrazione transendoteliale, fagocitosi, exocitosi) Eliminazione del danno Risoluzione Mancata eliminazione del danno Ascessualizzazione Infiammazione cronica Guarigione Cicatrizzazione/Rigenerazione FLOGOSI CRONICA (ISTOFLOGOSI) – lunga durata (settimane, mesi) SCARSA O NULLA PARTECIPAZIONE VASCOLARE SPESSO NON DIFENSIVA CELLULARITA' PREVALENTEMENTE MONONUCLEATA (linfociti T e B, macrofagi) DISTRUZIONE DEI TESSUTTI E GUARIGIONE PROCEDONO CONTEMPORANEAMENTE ANGIOGENESI E FIBROSI Cause: - infezioni persistenti (es. TBC) - prolungata esposizione a sostanze potenzialmente tossiche (es: silicosi, aterosclerosi) - malattie autoimmuni CARATTERISTICA: GRANULOMA = area focale di infiammazione cronica specifica caratterizzata da macrofagi modificati. Il granuloma ! Le citochine Le citochine sono polipeptidi prodotti in risposta a microbi e antigeni e hanno il ruolo di mediare e regolare le risposte immuni e infiammatorie. The cytokine network Endotossiemia • Riconoscimento di LPS da LBP/CD14 e Toll-like receptors • Signaling via Toll Receptor 4 • Effetti LPS su cells infiammatorie: 1. 2. 3. 4. 5. 6. Produzione di citochine Mediatori derivati da fosfolipidi di membrana Attivazione ed espressione di molecole adesive Attivazione di neutrofili Produzione di NO Induzione di attività procoagulante LPS ! ! L’analisi dell’infiammazione sistemica nell’uomo basata su approcci di systems biology LETTERS NATURE|Vol 437|13 October 2005 had a maximum of 35 genes. (3) Pathways of highly interconnected genes were identified by statistical likelihood using the following equation: ! f 21 X CðG; iÞCðN 2 G; s 2 iÞ Score ¼ 2log10 1 2 CðN; sÞ i¼0 13. 14. where N is the number of genes in the genomic network, of which G are focus genes, for a pathway of s genes, f of which are focus genes. C(n,k) is the binomial coefficient. (4) Pathways with a score greater than 4 (P , 0.0001) were combined to form a composite network representing the underlying biology of the process. 15. 16. 17. Received 17 May; accepted 4 July 2005. Published online 31 August 2005. 18. 1. 19. LETTERS Heller, R. A. et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl Acad. Sci. USA 94, 2150–-2155 (1997). 2. Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–-537 (1999). 3. Alizadeh, A. A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–-511 (2000). 4. Bittner, M. et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406, 536–-540 (2000). 5. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–-752 (2000). 6. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–-867 (2002). 7. Ridker, P. M., Hennekens, C. H., Buring, J. E. & Rifai, N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N. Engl. J. Med. 342, 836–-843 (2000). 8. Cheung, C. Y. et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 360, 1831–-1837 (2002). 9. Bone, R. C. et al. Definitions for sepsis 2 and organ failure and guidelines for the 3 use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care 3 Medicine. Chest 101, 1644–-1655 (1992). 10. Fong, Y. M. et al. The acute splanchnic and peripheral tissue metabolic 7 5 85, 1896–-1904 (1990). response to endotoxin in humans. J. Clin. Invest. 11. Dinauer, M. C., Orkin, S. H., Brown, R., Jesaitis, A. J. & Parkos, C. A. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex. Nature 327, 717–-720 (1987). 12. Wolk, K., Docke, W. D., von Baehr, V., Volk, H. D. & Sabat, R. Impaired antigen 20. 21. 22. presentation by human monocytes during endotoxin tolerance. Blood 96, 218–-223 (2000). Wolk, K., Kunz, S., Crompton, N. E., Volk, H. D. & Sabat, R. Multiple mechanisms of reduced major histocompatibility complex class II expression in endotoxin tolerance. J. Biol. Chem. 278, 18030–-18036 (2003). Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652–-658 (2005). Baines, C. P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658–-662 (2005). Buttgereit, F. & Brand, M. D. A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 312, 163–-167 (1995). Crouser, E. D., Julian, M. W., Blaho, D. V. & Pfeiffer, D. R. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit. Care Med. 30, 276–-284 (2002). Padfield, K. E. et al. Burn injury causes mitochondrial dysfunction in skeletal muscle. Proc. Natl Acad. Sci. USA 102, 5368–-5373 (2005). Brealey, D. et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360, 219–-223 (2002). Fink, M. P. Cytopathic hypoxia. Mitochondrial dysfunction as a mechanism contributing to organ dysfunction in sepsis. Crit. Care. Clin. 17, 219–-237 (2001). Kalil, A. C. et al. Effects of drotrecogin alfa (activated) in human endotoxemia. Shock 21, 222–-229 (2004). Li, C. & Wong, W. H. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. USA 98, 31–-36 (2001). Tusher, V. G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA 98, 5116–-5121 (2001). Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–-14868 (1998). Vol 437|13 October 2005|doi:10.1038/nature03985 A network-based analysis of systemic inflammation in humans 23. 24. Supplementary Information is linked to the online version of the paper at www.nature.com/nature. 3 Steve E. Calvano1*, Wenzhong Xiao *, Daniel R. Richards , J.Ramon M. S.Felciano Henryfor technical V. Baker4,5, Wilhelmy, A. Kumar, MacMillan and A.,Abouhamze assistance. This work was supported6by an Injury and the Host Response to 6 5 Large ScaleCobb Collaborative, Research Program Award from the , J. Perren S. Kevin Tschoeke , Raymond J. Cho3, Richard O. Chen , Bernard H. BrownsteinInflammation National Institute of General Medical Sciences (to R.G.T.). 2 2 8 , Ronald Davis , Ronald Carol Miller-Graziano , Lyle L. Moldawer , Michael N. Mindrinos Author Information Reprints andW. permissions information is available at G. Tompkins , npg.nature.com/reprintsandpermissions. The authors declare competing Injury Large Scale Collaborative Research Stephen F. Lowry1 & the Inflammation and Host Response to financial interests: details accompany the paper on www.nature.com/nature. Correspondence and requests for materials should be addressed to R.W.D. ([email protected]). Program† Acknowledgements We thank S. M. Coyle for clinical assistance, and Oligonucleotide and complementary DNA microarrays are being endotoxin activates innate immune responses and presents with Inflammation and Host Response to Injury Large Scale Collaborative Research Program Paul E. Bankey , Timothy R. Billiar , David G. 10 Notably, there is an initial used to subclassify histologically similar monitor diseaseA. Choudhry physiological responses duration Casellatumours, , Irshad H. Chaudry , Mashkoor , Charles Cooper , Asitof Debrief , Constance Elson ,. Bradley Camp , George 1–5 , Richard L. Gamelli , Celeste Campbell-Finnerty , Nicole S. Gibran , Douglas L. Hayden , Brian G. Harbrecht , David N. Freeman proinflammatory phase and a subsequent counterregulatory phase, progress, and individualize treatment regimens . However, Herndon , Jureta W. Horton , William J. Hubbard , John L. Hunt , Jeffrey Johnson , Matthew B. Klein , James A. Lederer , Tanya extracting new biological insight fromV.high-throughput genomic with, resolution of virtually clinical within 24 h. , Ronald Maier , John A. Mannick , Philip H. Mason Bruce A. McKinley , Joseph P.all Minei , Ernestperturbations E. Moore , Logvinenko B. Nathens Grant E. O’Keefe G. Rahme ,cluster Daniel G.and Remick , David A.component Schoenfeld , Martin Frederick Moore , Avery studies of human diseases is a A.challenge, limited by ,difficulties in, LaurenceK-means principal analyses were first used Schwacha , Michael B. Shapiro , Geoffrey M. Silver , Richard D. Smith , John D. Storey , Mehmet Toner , H. Shaw Warren , recognizing and evaluating relevant biological processes from to visualize the overall response to endotoxin administration. Figure Michael A. West huge quantities of experimental data. Here we present a structured 1a reveals probe sets clustered by K-mean analysis, where each bin has 1 3 4 7 5 5 8 9 9 11 6 5 10 16 5 10 6 2 13 26 14 15 16 10 8 2 1 6 12 15 10 19 19 26 17 3 11 18 20 13 6 21 22 Scopo dell’applicazione: chiarire i meccanismi responsabili della risposta infiammatoria sistemica a LPS nel contesto di una guarigione completa Questo studio NON può essere eseguito su cellule Questo studio NON può essere eseguito su pazienti “veri” in quanto i pazienti con endotossiemia hanno spesso patologie pregresse oppure vanno incontro a trattamenti che alterano la risposta infiammatoria FASI DELL’APPLICAZIONE: 1. Soggetti umani ed induzione dell’endotossiemia 2. Dinamica della risposta genomica infiammatoria 3. Costruzione dell’interactoma 4. Il network dell’infiammazione sistemica 5. Analisi della dinamica delle pathways di geni coinvolti 6. Conclusioni sulla dinamica della risposta infiammatoria sistemica transiente 1. Soggetti umani ed induzione dell’endotossiemia a. Il modello dell’endotossiemia umana: 8 soggetti sani tra 18-40 anni sono stati divisi in 2 gruppi: controllo e trattati con LPS 2ng/kg b. Sampling del sangue (blood sampling): I campioni di sangue sono stati ottenuti da ogni paziente a tempo 0, e a 2h, 4h, 6h, 9h e 24h dopo l’infusione di LPS c. Isolamento dei leucociti totali dal sangue ed estrazione del RNA - Isolamento dei leucociti dopo la lisi dei globuli rossi - Isolamento del RNA totale mediante kit Qigen 2. Dinamica della risposta genomica infiammatoria Profili di espressione genica nei leucociti circolanti in risposta all’endotossina Risultati micorarrays: - 5.093 probe sets variano in maniera significativa in risposta a LPS - sono stati identificati 3.714 geni EntrezGeneID (http:// www.ncbi.nih.gov/Entrez/) Il clustering dei probe sets in 10 bins è stato effettuato con K-means analysis utilizzando Cluster e TreeView che rappresentano due programmi integrati per analizzare e visualizzare risultati di esperimenti complessi di microarrays. Ogni bin rappresenta un pattern temporale distinto K-means clustering The algorithm is composed of the following steps: 1. Place K points into the space represented by the objects that are being clustered. These points represent initial group centroids. 2. Assign each object to the group that has the closest centroid. 3. When all objects have been assigned, recalculate the positions of the K centroids 4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation of the objects into groups from which the metric to be minimized can be calculated. 2. Dinamica della risposta genomica infiammatoria Risultati: Più della metà dei geni presentano una riduzione dell’espressione (bins 0-4) Un gruppo ridotto mostra un aumento a 2h (bins 5, 6) L’espressione degli altri geni aumenta tardivamente (bins 7-9) 2. Dinamica della risposta genomica infiammatoria 3D plot del principal component dei probe sets significativi a vari time points dopo la somministrazione di LPS PRINCIPAL COMPONENT ANALYSIS per dati di microarays Principal components analysis (PCA) is a statistical technique for determining the key variables in a multidimensional data set that explain the differences in the observations, and can be used to simplify the analysis and visualization of multidimensional data sets. PCA allows us to summarize the ways in which gene responses vary under different conditions. PCA is a method that reduces data dimensionality by performing a covariance analysis between factors. As such, it is suitable for data sets in multiple dimensions, such as a large experiment in gene expression. 3. Costruzione dell’interactoma IL DATABASE http://www.ingenuity.com/ Sono state utilizzate le informazioni fornite da Ingenuity Systems Inc. (a pagamento! 2005: “The Ingenuity Pathways Knowledge Base (KB) is the largest curated database of previously published findings on mammalian biology from the public literature.” The KB is constructed through the efforts of Ph.D.- level scientists who have read the abstracts of every paper in the Ingenuity KB. These scientists manually extracted the findings in the KB from the full text of >200,000 articles, including the abstract, text, tables, and figures. As of January 2005, the KB includes information of more than 9,800 human (including the ~9,500 Reviewed and Validated Human RefSeqs, http://www.ncbi.nlm.nih.gov/entrez/ query.fcgi?CMD=search&DB=gene ), 7,900 mouse, and 5,000 rat genes. 3. Costruzione dell’interactoma IL DATABASE http://www.ingenuity.com/ Sono state utilizzate le informazioni fornite dal database di Ingenuity Systems Inc. (a pagamento! 2005: “The Ingenuity Pathways Knowledge Base (KB) is the largest curated database of previously published findings on mammalian biology from the public literature. The KB is constructed through the efforts of Ph.D.-level scientists who have read the abstracts of every paper in the Ingenuity KB. These scientists manually extracted the findings in the KB from the full text of >200,000 articles, including the abstract, text, tables, and figures. As of January 2005, the KB includes information of more than 9,800 human (including the ~9,500 Reviewed and Validated Human RefSeqs, http:// www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search&DB=gene ), 7,900 mouse, and 5,000 rat genes.” 3. Costruzione dell’interactoma IL DATABASE http://www.ingenuity.com/ 2011: The Ingenuity Pathways Analysis (IPA) program is a software that helps researchers model, analyze, and understand data derived from gene expression, microRNA, and SNP microarrays; metabolomics, proteomics, and RNA-Seq experiments; and small-scale experiments that generate gene and chemical lists. Network analysis was performed on molecular relationships involving 8,000 human orthologs (between human, mouse and rat, as defined by Homologene, http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=homologene). IPA® 9.0 Applications • • • • • Target Identification and Validation Biomarker Discovery Drug Mechanism of Action Drug Mechanism of Toxicity Disease Mechanisms Experimental approaches supported • • • • • • • RNA-Seq microarray microRNA mRNA qPCR proteomics genotyping Identifiers supported in IPA • • • • • • • • • • • • • • • • • • • • • • • Affymetrix (Exon/Gene Expression, 3’ IVT Expression) Affymetrix SNP ID (Genotyping) Agilent (Gene Expression, microRNA) Applied Biosystems (Gene Expression, microRNA) CAS Registry CodeLink dbSNP IDs (including Illumina genotyping arrays with dbSNP ids) Entrez Gene Ensembl new GenBank GenPept GI Number HUGO Gene Symbol Human Metabolome Database (HMDB) Illumina (whole-genome & microRNA arrays) International Protein Index KEGG ID miRBase (mature) PubChem CID RefSeq new UCSC Human Isoform IDs (hg 18 & hg 19) UniGene UniProt/SwissProt Accession IPA® is an all-in-one, web-based software application that enables you to analyze, integrate, and understand data derived from gene expression, microRNA, and SNP microarrays; metabolomics, proteomics, and RNA-Seq experiments; and small-scale experiments that generate gene and chemical lists. With IPA you can search for targeted information on genes, proteins, chemicals, and drugs, and build interactive models of your experimental systems. IPA’s data analysis and search capabilities help you understand the significance of your data, specific target, or candidate biomarker in the context of larger biological or chemical systems, backed by the Ingenuity® Knowledge Base of highly structured, detailrich biological and chemical Findings. Path Designer transforms networks and pathways into publication quality representations of biological systems. Data Analysis & Interpretation IPA’s Data Analysis and Interpretation unlocks the insights buried in experimental data by quickly identifying relationships, mechanisms, functions, and pathways of relevance, allowing you to move beyond statistical analysis to novel biological insights, testable hypotheses, and validation experiments. IPA Core Analysis delivers a rapid assessment of the signaling and metabolic pathways, molecular networks, and biological processes that are most significantly perturbed in a dataset of interest. • Understand the relative impact of changes in mRNA, microRNA, protein or metabolite levels in the context of well-characterized pathways. • Identify the cellular and disease phenotypes most significant to a set of genes, and understand how those genes impact that phenotype, i.e. whether they increase or decrease a biological process. Species-specific identifiers supported in IPA • • • • Human Mouse Rat Additional species supported Identify pathways implicated by multiple experimental platforms. • Optimize visualization and biological context of analyses with Context and Network Size parameters. National Center for Biotechnology Information My NCBI [Sign In] [Register] All Databases Search PubMed Limits Homepage Query Tips Build Procedure FTP site Genome Resources Homo sapiens Mus musculus Rattus norvegicus Danio rerio Protein Genome for HomoloGene HomoloGene Nucleotide Preview/Index Structure Go History Clipboard OMIM PMC Journals Clear Details HomoloGene is a system for automated detection of homologs among the annotated genes of several completely sequenced eukaryotic genomes. HomoloGene Release 65 Statistics Initial numbers of genes from complete genomes, numbers of genes placed in a homology group, and the numbers of groups for each species. Species Number of Genes HomoloGene Input Grouped groups * Homo sapiens 18,981 18,431 19,943 Pan troglodytes 16,850 15,980 25,096 Canis familiaris 16,708 15,951 19,766 Bos taurus 18,180 16,224 22,049 Mus musculus 21,766 19,005 25,388 Rattus norvegicus 19,229 17,473 21,991 Gallus gallus 13,142 11,905 17,959 * Danio rerio 21,084 14,067 26,690 * Drosophila melanogaster 9,282 7,749 13,827 Anopheles gambiae 8,867 7,541 12,460 Caenorhabditis elegans 8,678 4,810 20,132* Schizosaccharomyces pombe 3,225 2,935 5,043 Saccharomyces cerevisiae 4,851 4,370 5,880 Kluyveromyces lactis 4,459 4,382 5,335 Eremothecium gossypii 3,928 3,884 4,722 Magnaporthe grisea 7,330 6,399 12,832 * Neurospora crassa 6,287 6,144 9,821 Arabidopsis thaliana 19,961 11,243 27,309* Oryza sativa 17,276 10,627 26,887 Plasmodium falciparum 1,862 799 5,266 '*' indicates organisms where new genome annotation data is used in this build. Last updated on: Mon Feb 14 2011 We have recently adopted a new build procedure that makes use of amino acid sequence searching (blastp) to find more distant relationships, but the procedure still refers to the DNA sequence for computation of some of the statistics. The matching strategy is guided by the taxonomic tree such that more closely related organisms are compared first. Moreover, HomoloGene entries now include paralogs in addition to orthologs. What's New HomoloGene release 65 includes updated annotations for the following species: Homo sapiens (NCBI release 37.2), Danio rerio (NCBI release 4.1), Drosophila melanogaster (NCBI release 9.3) Caenorhabditis elegans (NCBI release 9.1), Arabidopsis thaliana (NCBI release 9.1). Tip of The Day Use [unigene id] in your search query to restrict search results to that particular unigene cluster. e.g. Hs.15484[unigene id]. [More Tips] Related Resources Entrez Genomes A collection of complete genome sequences that includes more than 1000 viruses and over hundred microbes Archaea Bacteria Eukaryota Viruses Books 3. Costruzione dell’interactoma Esempio: il network del gene RELA estratto dal KB e visualizzato con IPA 1. Examining KB content for RELA (Suppl Figure 1) Supplementary Figure 1 describes the network neighborhood surrounding a single gene, RELA. To reproduce this network in IPA, please perform the following steps identified below. The network neighborhood is derived from findings extracted from the public literature and stored in the KB. Every gene interaction is supported by evidence from the underlying papers. Gene RELA Neighboring Genes 150 Direct Interactions 619 Findings 7,118 Papers 847 the page to view the “Network Neighborhood Explorer” for NF-kB = nuclear factor of kappa light chain gene enhancer in B-cells 7. From the “Network Neighborhood Explorer”, with RELA in Rel/NFKB family includes REL (c-Rel) (MIM164910), RELA (RelA/p65) (MIM 164014), RELB RELB in the diagram and and click on it. Alternately, select “RE (RelB) (604758), NFKB1 (P105/p50) (MIM 164011), NFKB2 (p100/p52) (MIM 164012). NFKB is activated by variety of stimuli cytokines, oxidant-free inhaled lista wide on the left. RELBsuch is as highlighted in blue, radicals, as are the edges particles, ultraviolet irradiation, and bacterial or viral products. Inappropriate activation of NFRELA: kappa-B has been linked to inflammatory events associated with autoimmune arthritis, asthma, septic shock, lung fibrosis, glomerulonephritis, atherosclerosis, and AIDS. 4. Il network dell’infiammazione sistemica A. LA CELLULA INFIAMMATORIA VIRTUALE: la risposta specifica dell’immunità innata 292 representative genes involved in inflammation and innate immunity. Genes for which the expression statistically increased from baseline are coloured red, those for which expression decreased are shown in blue 4. Il network dell’infiammazione sistemica B. Il network intracellulare della risposta infiammatoria generale cellulare (formato da 1.556 geni) 5. Analisi della dinamica delle pathways di geni coinvolti Analisi delle pathways dei geni rappresentativi dell’immunità innata nella cellula virtuale 5. Analisi della dinamica delle pathways di geni coinvolti La cellula virtuale: Risultati 2-4h Espressione massima di citochine e chemochine proinfiammatorie a 2-4h: TNFSF2 (TNFa), IL1alpha, IL1beta, CXCL1 (GROalpha), CXCL2 (GRO-beta), CCL2 (MCP-1), CXCL8 (IL-8) and CXCL10, molecole pro-infiammatorie come PTGS2 (sintesi di prostaglandine), SOD2 formazione di ROS (reactive oxygen species) come H2O2 Espressione di fattori di trascrizione pro-infiammatori a 2-4h: membri della famiglia di nuclear factor kappa/RelA (NFKB1, NFKB2, RELA and RELB) e STAT - Espressione di IKBKB (Inhibitor of nuclear factor kappa-B kinase subunit beta) che inibisce la funzione dell’inibitore di NFKB TNSF2 = Tumor necrosis factor ligand superfamily member 2 = TNFalpha PTGS2 = Prostaglandin G/H synthase 2 = Cyclooxygenase-2 SOD2 = Superoxide dismutase [Mn], mitochondrial 5. Analisi della dinamica delle pathways di geni coinvolti La cellula virtuale: Risultati 6h - Espressione di geni per STAT (signal transductor and activator of transcription) e cAMP-response element-binding protein (CREB) genes. - Espressione di geni per fattori di trascrizione che limitano la risposta innata come per esempio suppressor of cytokine signalling 3 (SOCS3). - Espressione di geni per citochine anti-infiammatorie: IL10 - Riduzione dell’espressioni di geni pro-infiammatori upregolati a 4h 9h – Riduzione dei geni pro-infiammatori 24h – Ritorno ad uno stato simile alla fase iniziale (tempo 0) 5. Analisi della dinamica delle pathways di geni coinvolti Il network intracellulare della risposta infiammatoria generale cellulare (formato da 1.556 geni) Blu = geni con ridotta espressione Rosso = geni con aumentata espressione to A small small amount amount of of to produce produce ATP, ATP, which which provides provides energy energy to to power power other other cellular cellular reactions. reactions. A The electron transport chain (ETC) in mitochondria ATP glycolysis. In In most most ATP is is available available from from substrate-level substrate-level phosphorylation, phosphorylation, for for example, example, in in glycolysis. organisms while only only some some organisms the the majority majority of of ATP ATP is is generated generated in in electron electron transport transport chains, chains, while [citation needed] obtain obtain ATP ATP by by fermentation. fermentation.[citation needed] Electron transport chains in mitochondria Most products of of the the Krebs Krebs Most eukaryotic eukaryotic cells cells contain contain mitochondria, mitochondria, which which produce produce ATP ATP from from products cycle, fatty acid oxidation, and amino acid oxidation. At the mitochondrial inner membrane, electrons from NADH and succinate pass through the electron transport chain to oxygen, which is reduced to water. The electron transport chain comprises an enzymatic series of electron donors and acceptors. Each electron donor passes electrons to a more electronegative acceptor, which in turn donates these electrons to another acceptor, a process that continues down the series until electrons are passed to oxygen, the most electronegative and terminal electron acceptor in the chain. Passage of electrons between donor and acceptor releases energy, which is used to generate a proton gradient across the mitochondrial membrane by actively pumping protons into the intermembrane space, producing a thermodynamic state that has the potential to do work. A small percentage of electrons do not complete the whole series and instead to produce ATP, which provides energy to directly leak to oxygen, resulting in the formation of the free-radical superoxide, a highly to produce ATP, which provides energy to power other cellular reactions. A small amount of ATP is available from substrate-level phosp reactive molecule that contributes to oxidative stress and has been implicated in a number of organisms the majority of ATP is generated ATP is available from substrate-level phosphorylation, for example, in glycolysis. In most diseases and aging. obtain ATP by fermentation.[citation needed] organisms the majority of ATP is generated in electron transport chains, while only some obtain ATP by fermentation.[citation needed] Mitochondrial redox carriers Electron transport chains in mitochondria NAD = Nicotinamide adenine dinucleotide UQ = ubiquinone Electron transport chains in Most eukaryotic cells contain mitochondria, Most eukaryotic cells contain mitochondria, which produce ATP from products of the Krebs cycle, fatty acid oxidation, and amino acid o cycle, fatty acid oxidation, and amino acid oxidation. At the mitochondrial inner membrane, electrons from NADH and succinate pass th electrons from NADH and succinate pass through the electron transport chain to oxygen, whichis reduced to water. The electron transport c donors and acceptors. Each electron donor p is reduced to water. The electron transport chain comprises an enzymatic series of electron donors and acceptors. Each electron donor passes electrons to a more electronegative acceptor, which in turn donates these electrons to ano which in turn donates these electrons to another acceptor, a process that continues down the series until electrons are passed to oxygen, acceptor in the chain. Passage of electrons b series until electrons are passed to oxygen, the most electronegative and terminal electron acceptor in the chain. Passage of electrons between donor and acceptor releases energy, which is used to generate a proton gradient across isStylized used torepresentation generate a proton gradient across the mitochondrial membrane by actively pumping protons into the intermembrane space, produ of the ETC protons into the intermembrane space, producing a thermodynamic state that has the potential to do work. A small percentage of electrons directly leak to oxygen, resulting in the form to do work. A small percentage of electrons do not(black complete the whole series and ETC is instead used to Energy obtained through the transfer of electrons arrows) down the reactive molecule that contributes to oxidati directly leak to(red oxygen, resulting in the formation ofmatrix the free-radical superoxide, a space, highly pump protons arrows) from the mitochondrial into the intermembrane reactive that contributes oxidative stresstheand has been implicated in a number of diseases and aging. (IMM) creating molecule an electrochemical protontogradient across mitochondrial inner membrane diseases called ". and Thisaging. electrochemical proton gradient allows ATP synthase (ATP-ase) to use the flow of H+ through the enzyme back into the matrix to generate ATP from adenosine Mitochondrial carriersphosphate. Complex I (NADH coenzyme Q reductase; diphosphate (ADP)redox and inorganic labeled I) accepts electrons from the Krebs cycle electron carrier nicotinamide adenine Mitochondrial redox carriers 5. Analisi della dinamica delle pathways di geni coinvolti Pathways che globalmente vanno incontro a soppressione dopo stimolazione sistemica con LPS Riduzione dei moduli implicati nella respirazione cellulare Group 1 mitochondrial respiratory chain complex I (NDUF genes) Group 3 ATP synthase complex (ATP5 genes). NDUF = NADH Ubiquinone oxidoreductase Fe-S Group 2 mitochondrial respiratory chain complex III (UQCR genes). UQCR = ubiquinol-cytochrome c reductase Group 4 pyruvate dehydrogenase complex. 5. Analisi della dinamica delle pathways di geni coinvolti Riduzione di geni implicati nella diffusione di soluti attraverso le membrane mitocondriali Group 5 mitochondrial permeability transition pore complex Riduzione di moduli implicati nell’attività ribosomiale Group 7 ribosomal proteins (RPL, RPS genes). Group 6 Group 6, elongation initiation factor complex (EIF3 genes) importanti nella traslazione. d b 5. Analisi della dinamica delle pathways di geni coinvolti Riduzione di moduli coinvolti nella pathway ubiquitin-proteasomes Group 8 COP9 signallosome (COPS genes). f Group 9 proteasome (PSM genes). e Group e subunits of the anaphasepromoting complex (E3 ubiquitin ligase) The ubiquitination system functions in a wide variety of cellular processes, including: Antigen processing Apoptosis Biogenesis of organelles Cell cycle and division DNA transcription and repair Differentiation and development Immune response and inflammation Neural and muscular degeneration Morphogenesis of neural networks Modulation of cell surface receptors, ion channels and the secretory pathway Response to stress and extracellular modulators Ribosome biogenesis Viral infection a c 5. Analisi della dinamica delle pathways di geni coinvolti Attivazione di geni implicati nel danno ossidativo e mitosi a b Groupc a . superoxideproducing phagocyte NADPHoxidase. d b d e Group d . tubulin-A genes. 5. Analisi della dinamica delle pathways di geni coinvolti a e c Riduzione di geni implicati nell presentazione antigenica (MHC II) e molecole di adesione implicate nel movimento cellulare (integrine) d b Group a members of the MHC II complex e f f Group f Integrin chains 6. Conclusioni sulla dinamica della risposta infiammatoria sistemica transiente 1. L’analisi della “cellula virtuale” evidenzia un’aumento transiente a tempi brevi dell’espressione genica per molecole con attività proinfiammatoria (citochine, chemochine, danno ossidativo, fattori di trascrizione pro-infiammatori, TLRs). A tempi più lunghi vengono attivati geni anti-infiammatori 2. L’analisi del network dell’infiammazione sistemica evidenzia una disregolazione di moduli implicati in varie funzioni cellulari nei leucociti umani: metabolismo energetico, sintesi proteica e degradazione proteica in seguito ad endotossiemia transiente 3. La soppressione di importanti moduli funzionali suggerisce che i leucociti esposti a stimoli pro-infiammatori hanno un’alterata capacità di rispondere a stimoli successivi (toleranza dell’immunità innata)