 
                                Information Builders Transforming Data Into Business Value Mauro Grassi Information Builders Milano, 8 Novembre 2012 1 Information Builders About Us • Software vendor indipendente con operazioni su scala globale • Valori centrali e primari – Servire il Cliente – Focalizzarsi sull’innovazione tecnologica • Forte penetrazione in tutti i maggiori mercati verticali • Partnership di lungo termine con tutti i Clienti  36 anni di esperienza  1,350 dipendenti  60 sedi worldwide  12.000 installazioni  Millioni di utenti “Only Information Builders achieves above-average ease of use, below-average implementation costs per user, above-average support for complex deployments and above-average business benefits.” 2 Information Builders Customers Banking Financial Services and Service Providers Manufacturing Consumer Packaged Goods Communications Insurance Retail Natural Resources Outsourced Services 3 Information Builders Customers Federal Government State and Local Government Education Healthcare Providers Healthcare Insurers Pharmaceutical and Medical Supply Transportation and Logistics Travel and Entertainment Not for Profit 4 Cosa ci chiede il mercato 6 BIG DATA per Information Builders  Volume di dati  Velocità (di generazione, raccolta, elaborazione e distribuzione)  Variabilità (di fonti e formati)  Tipologia di utenti  Nuovi processi 7 ANALITYTICS per Information Builders BI Analytics BI Tools Competitive Advantage What’s the best that can happen? What will happen next? What if these trends continue? Why is this happening? Decision Optimization Predictive Analytics Forecasting Statistical models Alerts What actions are needed? Query/drill down Where exactly is the problem? Ad hoc reports How many, how often, where? Standard reports What happened? Information Degree of Intelligence Insight (adattamento da Davenport, 2007) 8 Information Builders, BIG DATA + ANALITYTICS Information Builders the Only Large Independent With Above Average Ease of Use, Complexity but Low Implementation Cost per User Information Builders “The Information Stack” Business Intelligence Advanced Analytics Performance Management Data Quality Management Master Data Management Data Governance Integration Infrastructure Data Integration Universal Adapter Suite 10 Information Builders Transforming Data Into Business Value Revenue Generation Quality of Care/Service Information Operations and Financial Mgmt. Fraud, Waste and Abuse Risk, Compliance and Governance 1 1 Information Builders BIG DATA + ANALYTICS Highest Return on Investment Information Solutions Revenue Generation  Customer Acquisition and Retention  Online customer experience  Single view of customer  Customer intelligence Quality of Care/Service  Single view of patient, citizen, student, or criminal  Public information portals  Call center performance Operations & Financial Mgmt     Cost control and budget management Performance management of employees, suppliers, contractors Product and logistics intelligence Reduction of redundant, error-prone, and manual processes Fraud, Waste and Abuse  Real-time event analysis and predictive scoring  Identity management  Location intelligence Risk, Compliance and Governance  Government, industry, and corporate 1 2 Prescriptive Analytics Price Optimization Solution: Fact-Based Pricing BIG DATA + ANALYTICS per TESCO 14 Turning data into value Turning data into value Turning data into value TESCO BIG DATA + ANALYTICS CUSTOMER RETANTION FROM 13% TO 30% RECENCY, FREQUENCY, MONETARY PROFITABILITY PROFILO SOCIO-DEMO FIDELITY CARD, PUNTI PREMIO BASKET E MIX DI ACQUISTO SOCIAL WEB DATA (RT e non RT) consumer GARANZIE PRODOTTI VIDEO-INTELLIGENCE (riconoscimento volti e Comportamento fisico) GEO-POSITIONING FEEDBACK E-SURVEY INFORMAZIONI E RECLAMI AL CONTACT CENTER Businesses change slowly, customers change in an instant,“ Sir Terry Leahy, CEO TESCO 18 Health Governance & Information Management Cineca Case Study (Business Intelligence) Ing Busca Paolo Criteri di scelta degli strumenti Analisi processi di erogazione ed utilizzo dei servizi INTERNI • ETL Report dinamico • sviluppo Reporting e KPI standard • predisposizione ambiente di analisi dati ESTERNI (utenti) • utilizzo Reporting e KPI • sviluppo Reporting e KPI personalizzati • analisi dati from CONSUMER to PRODUCER of INFORMATION As - Is • 100+ Utenti Power User Report dinamico – Reporting Guidato – Analisi dei dati • 32 Asl (~9000 medici di famiglia) – Reporting statico (KPI) • 200 TB di datastore Simulazione variazione indicatori Impatto economico Anno 2010 ASL 420.000 resid. Spesa per statine: 8.682.467 Spesa altri farmaci: Spesa totale: + 8,4 - 936.000 72.353.195 81.035.662 -216 eventi CV acuti pari a -1.350.000 € PIANETA CARCERE, COME DARE I NUMERI SENZA PERDERE LA TESTA. WebFOCUS a supporto dell’Amministrazione Penitenziaria Dott.ssa ANNA FINO, Funzionario Informatico Ufficio per lo Sviluppo e la Gestione del S.I.A. e Supporto alle decisioni -Sezione Statistica Ministero della Giustizia Consolidamento - Statistica Tistit Ticons Tevol Diffusione dei dati dati giudiziari (condanne, reati, ...); Caratteristich e(sesso, nazionalità, ..) dati sociali (professione, …). Pagine statiche aggiornate periodicamente www.giustizia.it e intranet Pagine dinamiche Reportistica giornaliera con WebFOCUS Statistica Penitenziaria e altri adempimenti Sistan PIANETA CARCERE,: COME DARE I NUMERI SENZA PERDERE LA TESTA. WebFOCUS a supporto dell’Amministrazione Penitenziaria Dott.ssa Anna Fino Passa ad active report… Drilldown NATION WIDE and SECURITIES AMERICA agent application 27 La piattaforma di Information Builders 28 La piattaforma di Information Builders Mobile Applications Visualization & Mapping App/Dev, Portals & Mash-ups Predictive Analytics Enterprise Search Performance Management Reporting High Performance Data Store Query & Analysis MS Office & e-Publishing Dashboards Information Delivery Data Warehouse & ETL Business to Business Data Quality Master Data Management Business Activity Monitoring MetroPulse http://www.metropulsechicago.org/ Co pyr igh t 20 07, Inf or ma US bank https://scoreboardtest.usbank.com/approot_sb/sbdemo/scoreboard.html Terada applicazioni RapidWH di Teradata Conclusioni 33 Big Data  Our goal is to enable WebFOCUS to access ALL types of data.  Relational i.e. Oracle, Teradata, SqlSrv…  Application owned i.e. Peoplesoft, Siebel, SAP …  OLAP i.e. SAP/BW, ESSBASE, SQL SRV …  Legacy i.e. IMS, Remedy, C-ISAM…  Flat files i.e. Excel, Delimited,…  300+ adapters  New Data Sources .. NoSQL  New WebFOCUS adapters  FaceBook  SalesForce.com  MongoDB (JSON)  Hadoop/Hive/HDFS  GreenPlum , Vertica , Par Accel , 1010, Netezza 34 Big Data  Search-based BI with Magnify:  Automatic transfer of database records to search index database  Look for records based on items in their text and instantly access and display it from the database.  Create new ‘entities’ during transfer  Magnify Active Report of Hits for data analysis  Perform analysis on Text fields e.g. Sentiment Analysis 36 Magnify’s Search Results with Sentiment 37 Big Data  WebFOCUS Hyperstage:  A column-oriented database designed for speed of reporting  Replaces Cubes  Replaces Aggregate tables  Replaces Indexes  Doesn’t need a Database Administrator  It’s managed entirely thru the WebFOCUS console  Comes with a ‘fast data load’ ETL like facility for a quick start  WebFOCUS DataMigrator ETL for more complex situations  Features include..  90% compression of data.. E.g. 1 Terabyte of RDBMS data is only 10 gigabytes…  Fits into memory easily 38 Mobile  Our Strategy is: “Build Once, Deploy Anywhere”  We will rely on the HTML5 browser that all devices use, and not require any device coding.  This will extend to the Adobe format of FLEX that is very popular and will be added in our Release 8.0.1. so it will work on the iPad.  To achieve running on all devices.. we recognize the device and adjust what we send to conform to the capabilities of the device. Fx 39 Summit Evaluation Form on iPad 40 Data Visualization: Our HTML5 Catalog Data Visualization: New Chart Types Data Visualization: Social Media Charts Lexical Diversity Re-Posting Paths Lexical Frequencies Cloud Tags Streaming Frequencies 43 Data Visualization: New Chart Types Grazie! Mauro Grassi [email protected] +39 345 5684720 Milano, 7 Novembre 2012 45