Information Builders - The Innovation Group

Information Builders
Transforming Data Into Business Value
Mauro Grassi
Information Builders
Milano, 8 Novembre 2012
1
Information Builders
About Us
• Software vendor indipendente con operazioni su scala
globale
• Valori centrali e primari
– Servire il Cliente
– Focalizzarsi sull’innovazione tecnologica
• Forte penetrazione in tutti i maggiori mercati verticali
• Partnership di lungo termine con tutti i Clienti
 36 anni di esperienza
 1,350 dipendenti
 60 sedi worldwide
 12.000 installazioni
 Millioni di utenti
“Only Information Builders achieves above-average
ease of use, below-average implementation costs per
user, above-average support for complex
deployments and above-average business benefits.”
2
Information Builders
Customers
Banking
Financial Services
and Service Providers
Manufacturing
Consumer
Packaged Goods
Communications
Insurance
Retail
Natural
Resources
Outsourced
Services
3
Information Builders
Customers
Federal
Government
State and Local
Government
Education
Healthcare
Providers
Healthcare
Insurers
Pharmaceutical and
Medical Supply
Transportation and
Logistics
Travel and
Entertainment
Not for Profit
4
Cosa ci chiede il mercato
6
BIG DATA per Information Builders
 Volume di dati
 Velocità (di generazione, raccolta, elaborazione e distribuzione)
 Variabilità (di fonti e formati)
 Tipologia di utenti
 Nuovi processi
7
ANALITYTICS per Information Builders
BI Analytics
BI Tools
Competitive Advantage
What’s the best that can happen?
What will happen next?
What if these trends continue?
Why is this happening?
Decision Optimization
Predictive Analytics
Forecasting
Statistical models
Alerts
What actions are needed?
Query/drill down
Where exactly is the problem?
Ad hoc reports
How many, how often, where?
Standard reports
What happened?
Information
Degree of Intelligence
Insight
(adattamento da Davenport, 2007)
8
Information Builders, BIG DATA + ANALITYTICS
Information Builders the Only Large Independent With Above Average
Ease of Use, Complexity but Low Implementation Cost per User
Information Builders
“The Information Stack”
Business Intelligence
Advanced Analytics
Performance Management
Data Quality Management
Master Data Management
Data Governance
Integration Infrastructure
Data Integration
Universal Adapter Suite
10
Information Builders
Transforming Data Into Business Value
Revenue Generation
Quality of Care/Service
Information
Operations and Financial Mgmt.
Fraud, Waste and Abuse
Risk, Compliance and Governance
1
1
Information Builders BIG DATA + ANALYTICS
Highest Return on Investment Information Solutions
Revenue Generation
 Customer Acquisition and Retention
 Online customer experience
 Single view of customer
 Customer intelligence
Quality of Care/Service
 Single view of patient, citizen, student, or criminal
 Public information portals
 Call center performance
Operations & Financial Mgmt




Cost control and budget management
Performance management of employees, suppliers, contractors
Product and logistics intelligence
Reduction of redundant, error-prone, and manual processes
Fraud, Waste and Abuse
 Real-time event analysis and predictive scoring
 Identity management
 Location intelligence
Risk, Compliance and Governance
 Government, industry, and corporate
1
2
Prescriptive Analytics
Price Optimization Solution: Fact-Based Pricing
BIG DATA + ANALYTICS per TESCO
14
Turning data into value
Turning data into value
Turning data into value
TESCO BIG DATA + ANALYTICS
CUSTOMER RETANTION FROM 13% TO 30%
RECENCY, FREQUENCY,
MONETARY
PROFITABILITY
PROFILO SOCIO-DEMO
FIDELITY CARD, PUNTI PREMIO
BASKET E MIX
DI ACQUISTO
SOCIAL WEB DATA (RT e non RT)
consumer
GARANZIE PRODOTTI
VIDEO-INTELLIGENCE
(riconoscimento volti e
Comportamento fisico)
GEO-POSITIONING
FEEDBACK E-SURVEY
INFORMAZIONI E RECLAMI
AL CONTACT CENTER
Businesses change slowly, customers change in an instant,“
Sir Terry Leahy, CEO TESCO
18
Health Governance & Information Management
Cineca Case Study
(Business Intelligence)
Ing Busca Paolo
Criteri di scelta degli strumenti
Analisi processi di erogazione ed utilizzo dei servizi
INTERNI
• ETL
Report dinamico
• sviluppo Reporting e KPI standard
• predisposizione ambiente di analisi dati
ESTERNI (utenti)
• utilizzo Reporting e KPI
• sviluppo Reporting e KPI personalizzati
• analisi dati
from
CONSUMER to PRODUCER
of INFORMATION
As - Is
• 100+ Utenti Power User
Report dinamico
– Reporting Guidato
– Analisi dei dati
• 32 Asl (~9000 medici di famiglia)
– Reporting statico (KPI)
• 200 TB di datastore
Simulazione variazione indicatori
Impatto economico Anno 2010
ASL 420.000 resid.
Spesa per statine: 8.682.467
Spesa altri farmaci:
Spesa totale:
+ 8,4
- 936.000
72.353.195
81.035.662
-216 eventi CV acuti pari a -1.350.000 €
PIANETA CARCERE,
COME DARE I NUMERI SENZA PERDERE LA TESTA.
WebFOCUS a supporto dell’Amministrazione Penitenziaria
Dott.ssa ANNA FINO, Funzionario Informatico
Ufficio per lo Sviluppo e la Gestione del S.I.A. e Supporto alle decisioni -Sezione Statistica
Ministero della Giustizia
Consolidamento - Statistica
Tistit
Ticons
Tevol
Diffusione dei dati
dati giudiziari
(condanne,
reati, ...);
Caratteristich
e(sesso,
nazionalità, ..)
dati sociali
(professione,
…).
Pagine statiche aggiornate periodicamente
www.giustizia.it e intranet
Pagine dinamiche
Reportistica giornaliera con WebFOCUS
Statistica Penitenziaria e altri
adempimenti Sistan
PIANETA CARCERE,: COME DARE I NUMERI SENZA PERDERE LA TESTA.
WebFOCUS a supporto dell’Amministrazione Penitenziaria
Dott.ssa Anna Fino
Passa ad active report…
Drilldown
NATION WIDE and SECURITIES AMERICA
agent application
27
La piattaforma di Information Builders
28
La piattaforma di Information Builders
Mobile
Applications
Visualization
& Mapping
App/Dev, Portals
& Mash-ups
Predictive
Analytics
Enterprise
Search
Performance
Management
Reporting
High Performance
Data Store
Query &
Analysis
MS Office &
e-Publishing
Dashboards
Information
Delivery
Data Warehouse
& ETL
Business to
Business
Data Quality
Master Data
Management
Business Activity
Monitoring
MetroPulse
http://www.metropulsechicago.org/
Co
pyr
igh
t
20
07,
Inf
or
ma
US bank
https://scoreboardtest.usbank.com/approot_sb/sbdemo/scoreboard.html
Terada
applicazioni RapidWH di Teradata
Conclusioni
33
Big Data
 Our goal is to enable WebFOCUS to access ALL types of data.
 Relational i.e. Oracle, Teradata, SqlSrv…
 Application owned i.e. Peoplesoft, Siebel, SAP …
 OLAP i.e. SAP/BW, ESSBASE, SQL SRV …
 Legacy i.e. IMS, Remedy, C-ISAM…
 Flat files i.e. Excel, Delimited,…
 300+ adapters
 New Data Sources .. NoSQL
 New WebFOCUS adapters
 FaceBook
 SalesForce.com
 MongoDB (JSON)
 Hadoop/Hive/HDFS
 GreenPlum , Vertica , Par Accel , 1010, Netezza
34
Big Data
 Search-based BI with Magnify:
 Automatic transfer of database records to search index
database
 Look for records based on items in their text and instantly
access and display it from the database.
 Create new ‘entities’ during transfer
 Magnify Active Report of Hits for data analysis
 Perform analysis on Text fields e.g. Sentiment Analysis
36
Magnify’s Search Results with Sentiment
37
Big Data
 WebFOCUS Hyperstage:
 A column-oriented database designed for speed of reporting
 Replaces Cubes
 Replaces Aggregate tables
 Replaces Indexes
 Doesn’t need a Database Administrator
 It’s managed entirely thru the WebFOCUS console
 Comes with a ‘fast data load’ ETL like facility for a quick start
 WebFOCUS DataMigrator ETL for more complex situations
 Features include..
 90% compression of data.. E.g. 1 Terabyte of RDBMS data is
only 10 gigabytes…
 Fits into memory easily
38
Mobile
 Our Strategy is: “Build Once, Deploy Anywhere”
 We will rely on the HTML5 browser that all devices use,
and not require any device coding.
 This will extend to the Adobe format of FLEX that is very
popular and will be added in our Release 8.0.1. so it will
work on the iPad.
 To achieve running on all devices.. we recognize the device
and adjust what we send to conform to the capabilities of
the device.
Fx
39
Summit Evaluation Form on iPad
40
Data Visualization: Our HTML5 Catalog
Data Visualization: New Chart Types
Data Visualization: Social Media Charts
Lexical Diversity
Re-Posting Paths
Lexical Frequencies
Cloud Tags
Streaming Frequencies
43
Data Visualization: New Chart Types
Grazie!
Mauro Grassi
[email protected]
+39 345 5684720
Milano, 7 Novembre 2012
45