PROGRAMMA G1 FSE 2009-301 "MECCANICA APPLICATA" Prof.Michele Lapresa DINAMICA Principi della dinamica I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 1) principio di interzia di Galilei; 2) legge dinamica di Newton; 3) principio di azione e reazione. Il principio di interzia di Galilei afferma che un corpo libero, cioè non sottoposto all’azione di altri corpi, si muove di moto rettilineo r uniforme. Quindi la sua velocità è costante, e si indica con v 0 . r Il vettore costante v 0 può essere nullo ed in questo caso si dice che il corpo è in quiete. La legge dinamica di Newton afferma che nel generico moto di un corpo di massa m, l’accelerazione istantanea del corpo è determinata da una causa esterna secondo la relazione r v F = ma , r F è detta forza agente sul corpo. dove la grandezza vettoriale La forza si misura in Newton (N), dove 1 N = 1 kg m/s2. Dalla legge di interzia e dalla legge dinamica di Newton si deduce che per un corpo libero, la cui accelerazione è nulla, deve essere nulla la forza agente sul corpo: r r r r a = 0 ⇔ F = 0 . Va notato che la forza agente su un corpo può essere la somma vettoriale di forze diverse che agiscono sul corpo. r v v , ,..., F F F Cioè, se 1 2 N sono le N forze che agiscono sul corpo, la forza risultante sarà r r r v N r F = ∑ Fi = F1 + F2 + ... + FN . i =1 Ed è questa la forza risultante che determina il moto del corpo. Il principio di azione e reazione afferma che dati due corpi r la forza F12 che agisce sul primo corpo a causa del secondo corpo r F è uguale e contraria alla forza 21 che agisce sul secondo corpo a causa del primo corpo. Ovverosia: r r F12 = − F 21 . Questo principio a volte si enuncia dicendo che “ad ogni azione corrisponde una reazione uguale e contraria”. Quantità di moto r Dato un corpo di massa m e velocità v , la sua quantità di moto è la grandezza vettoriale definita come r r p = mv . La quantità di moto si misura in kg m/s = N s. Se vi sono N corpi, ognuno con la propria quantità di moto, la quantità di moto totale è la somma vettoriale delle quantità di moto dei singoli corpi. Inoltre, si dimostra la conservazione della quantità di moto: se non agiscono forze esterne sul sistema la quantità di moto totale di conserva. Forze agenti su un corpo La dinamica di un corpo puntiforme è determinata dalle legge di Newton r v F = ma . Consideriamo alcuni semplici casi. Forza peso Se la forza è costante anche l’accelerazione è costante e quindi il corpo si muove di moto uniformemente accelerato. È questo il caso della forza peso, che ora analizziamo. La forza peso è la forza a cui è soggetta un corpo in caduta libera nel vuoto. Essa è data da r r F = mg r g dove m è la massa del corpo mentre è un vettore noto come accelerazione di gravità, diretto verso il centro della terra ed il cui modulo vale circa g = 9.81 m/s2 . Dunque l’intensità della forza peso è proporzionale alla massa del corpo. Nel linguaggio parlato spesso le parole “peso” e “massa” vengono considerate sinonimi. Se un corpo è in caduta libera nel vuoto su di esso agisce la sola r r forza peso F = m g e quindi dalla legge di Newton r v mg = ma si ricava l’accelerazione, che è l’accelerazione di gravità. Lungo l’asse verticale z: a=−g, dove il segno meno è dovuto al fatto che l’accelerazione di gravità è diretta verso il basso. Si tratta di una moto uniformemente accelerato. Se il corpo parte da fermo da un’altezza h, la sua posizione nel tempo lungo l’asse verticale z risulta data da z = h− 1 2 gt , 2 con z = 0 quando il corpo tocca il suolo. In quel caso si avrà h= 1 gT 2 , 2 dove T è il tempo impiegato dal corpo per raggiungere il suolo. Forza elastica La forza elastica è la forza che segue la seguente legge, nota come legge di Hooke: r r F = − kr , r dove r è la posizione del corpo sulla quale agisce la forza e k è una costante, detta costante elastica, che si misura in Newton/metro. Essa è detta forza elastica perché è la forza esercitata da un elastico o una molla per piccole deformazioni. La forza elastica è una forza di richiamo perché ha sempre segno opposto alla deformazione e tende a riportare l’elastico o la molla nello stato di riposo. Se un corpo di massa m è sottoposto all’azione di una forza elastica si dimostra che esso è soggetto ad un moto armonico, la cui frequenza angolare è data da ω = k m . Forza di reazione vincolare La forza di reazione vincolare è la forza esercitata da una superficie solida su un corpo a contatto con la superficie. r La forza di reazione vincolare F , essendo un vettore, si può pensare come la somma vettoriale di r F una forza di reazione T tangente (parallela) alla superficie ed r una forza di reazione FN normale (perpendicolare) alla superficie: r r r F = FT + FN . r La forza FN di reazione normale alla superficie è sempre tale da impedire il moto del corpo nella direzione normale (entrante) alla superficie, se la superficie non si deforma o spezza. r La forza FT di reazione tangente alla superficie è anche detta forza di attrito. Per essa si distinguono due casi: r r F i) superficie liscia (o vincolo liscio): T = 0 r r F ii) superficie scabra (o vincolo scabro): T ≠ 0 . r Dagli esperimenti si trova che la forza di attrito FT agente su un corpo che si muove su una superficie solida scabra è data da FT = − µ F N dove µ è un coefficiente, detto coefficiente di attrito (solitamente compreso tra 0 ed 1). Es. Le forze agenti su un corpo fermo su un piano orizzontale r r r W = m g e la forza di reazione normale N sono: la forza peso La forza peso W è perpendicolare al tavolo e la forza di reazione vincolare N è uguale e contraria alla forza peso. Forza di attrito in un fluido La forza di attrito in un fluido (gas o liquido) è la forza esercitatardal fluido su un corpo che si muove con una velocità v all’interno del fluido. La forza è data da r r F = − cv dove c è un coefficiente, detto coefficiente di attrito viscoso, che dipende dalla forma del corpo e dalla natura del fluido. Si osservi che questa espressione per la forza di attrito viscoso è valida se la particella si muove a bassa velocità. A velocità altre la dipendenza dalla velocità non è più lineare. Nel caso di una sfera di raggio R che si muove in un fluido Stokes ha dimostrato che il coefficiente di attrito viscoso è dato dalla seguente formula c = 6π R η dove η è un coefficiente noto come viscosità del fluido. Una semplice analisi dimensionale mostra che la viscosità η si misura in Ns/m2, dove 1 N s/m2 = 1 Poiseuille (Po). Forza di tensione di un cavo Quando un cavo (o una fune, una corda, un filo) è fissato ad un corpo e tirato , si dice che è sotto tensione. Il cavo esercita sul corpo una forza di tensione, indicata r solitamente con T , applicata al punto di fissaggio del cavo e orientata lungo il cavo nel verso di allontanamento dal corpo. Statica di un corpo rigido Affinché il corpo rigido non trasli deve essere nulla la somma vettoriale delle forze esterne agenti su di esso: r r ∑ i Fi = 0 . Ma per avere un corpo rigido fermo questo non basta. Infatti, affinché il corpo rigido non ruoti deve essere nullo il momento risultante delle forze esterne: r r M = 0 ∑ i . i Non abbiamo però ancora definito il momento di una forza. Ecco la definizione. r r Data la forza F ed il raggio vettore r = OP, si dice momento della forza applicata nel punto P rispetto all’origine O, la seguente grandezza vettoriale: r r r M =r∧F . Es. In figura sono rappresentati due corpi, una a sinistra di massa mS e distanza rS dal fulcro, ed uno a destra di massa mD e distanza rD dal fulcro, appoggiati su una asta rigida, di massa trascurabile, appoggiata al fulcro grigio. r Le frecce indicano la forza peso mS g agente sul corpo r m g di sinistra, la forza peso D agente sul corpo di destra e r la forza di reazione vincolare N dell’asta e dell’appoggio. Per l’equilibrio: mS g + mDg = N ma anche, calcolando i momenti delle forze dispetto al fulcro rS ⋅ mS g = rD ⋅ mDg . Dalla prima equazione: N = ( mS + mD ) g , dalla seconda equazione: rS mS = rD mD .