Laurea Magistralis MEDICINE and SURGERY Corso di in Laurea Specialistica in MEDICINA e CHIRURGIA “HARVEY” corso integrato FISICA - disciplina FISICA Integrated Course/Discipline: PHYSICS MAGNETIC FIELD - CHARACTERISTICS OF THE MAGNETIC FIELD - LORENTZ’S FORCE - MAGNETIC MOMENT - SOLENOID - MAGNETIC PROPERTIES OF MATTER - CIRCULATION THEOREM D. SCANNICCHIO 2009 01/22 MAGNETIC FIELD force azionibetween di forza wires tra filiwhen percorsi legge Laplace’s law di Laplace crossed by anelettrica electric:current: da corrente µ i1 i 2 Δl F = → 2π d –F i1 permeability µ = magnetic permeabilità magnetica Δl d → +F i2 F = B i2 Δl leggeand di Biot e Savart Biot Savart’s law µ i1 B= 2π d B = modulus of the magnetic induction vector or magnetic field (produced by i1) D. SCANNICCHIO 2009 02/22 MAGNETIC FIELD legge di Laplace Laplace’s law y o z i x → → → F = Δl i2 ∧ B magneticmagnetica induction induzione → B → B modulus: modulo : leggeand di Biot e Savart Biot Savart’s law → µ i1 B= 2π d B → direction : ⊥ i direzione versus: rotazione : rotation vite of a screw→ verso avanzante verso di i i moving as current → B i D. SCANNICCHIO 2009 B solenoidal field (closed line of force) 03/22 MAGNETIC FIELD B solenoidal field (closed line of force) L (closed path) ≠ 0 force field NOT CONSERVATIVE (in general) dimensions: [B] = [force] = [M] [t]–1[Q]–1 [L] [electric current] measure units: newton weber volt •s = = = tesla (T) I.S. 2 2 ampere • m m m practice gauss = 10–4 tesla earth magnetic field: on ground ≈ 0.5 gauss D. SCANNICCHIO 2009 04/22 MAGNETIC PERMEABILITY µ i1 i2 Δl F = 2π d µ = µo µr µ = permeabilità magnetica magnetic permeability µo = 4 π 10–7 kg ⋅ m ⋅ C–2 µo = permeabilità magnetica nel vuoto vacuum magnetic permeability magnetica relativa materia) related magnetic permeability (in (nella the matter) µr = permeabilità diamagnetiche µr ~< 1 sostanze diamagnetic materials paramagnetic materials µr > paramagnetiche ~ 1 sostanze ferromagnetic materials µr >> ˘ 1 sostanze ferromagnetiche D. SCANNICCHIO 2009 05/22 MAGNETIC FIELD INTENSITY magnetic vector vettore magnetico non not dependent from materials dipendente dalla materia → B H = µ → dimensions: dimensioni [M][t]–1[Q]–1 –1 –1 [L] [t] [Q] [H] = = –2 [L][M][Q] D. SCANNICCHIO 2009 06/22 LORENZ’S FORCE legge di Laplace Laplace’s law → → → F = Δl i2 ∧ B generale iningeneral, for a per q incharge moto q moving → → → F= qv∧B D. SCANNICCHIO 2009 → B → v y q o x z → F Lorentz’s force forza di Lorentz 07/22 MAGNETIC MOMENT spira percorsa corrente: electric current da through a coil → → n magnetic moment M definition: momento magnetico M → i → M=iSn → M S measure units: → in a magnetic field B : in campo magnetico ampere • m2 I.S. → equilibrio : M equilibrium → → B → same behaviouridem as a magnet: calamita : nord = M M D. SCANNICCHIO 2009 08/22 MAGNETIC MOMENT spira percorsa corrente: electric current da through a coil → → momento moment magnetico n magnetic M :M → M=iSn → i M S → → → same behaviour a magnet: idem as calamita : nord = M M → in a magnetic field B : in campo magnetico → equilibrio : M equilibrium → B Ampère’s principio di equivalence equivalenzaprinciple di Ampère : calamita magnet D. SCANNICCHIO 2009 ≡ spira percorsabyda corrente coil crossed a current 09/22 SOLENOID circular coil : spira circolare → (B al della spira)coil) atcentro center of circular legge di Savart’s Biot e Savart Biot and law µ i1 B= 2π d µi B= 2R D. SCANNICCHIO 2009 → n i S → B R 10/22 SOLENOID solenoide circolari) solenoid (N (N spire circular coils) : → B → N i campo magnetico uniforme uniform magnetic field n= N l D. SCANNICCHIO 2009 B solenoid in solenoide longitudinal in sezione l longitudinale section B=µin 11/22 SOLENOIDAL FORCE FIELD permanent magnet magneti permanenti N N S → B → B S → S B S D. SCANNICCHIO 2009 N N dipolo magnetic magnetico dipole 12/22 MAGNETIC PROPERTIES OF MATTER atomo atom atomic electron orbitali atomiciorbitals microscopic coils : : spire microscopiche → orbital magnetic moment m m momento magnetico orbitale → momento magnetico dis spin s spin magnetic moment proprietà materialsmagnetiche magnetic dei materiali properties D. SCANNICCHIO 2009 diamagnetismo diamagnetism paramagnetismo paramagnetism ferromagnetism ferromagnetismo 13/22 MAGNETIC PROPERTIES OF MATTER diamagnetismo diamagnetism (composticompounds) organici) µr < 1 (organic ~ → → m = 0 s = 0 (induzione magnetica) (magnetic induction) paramagnetismo paramagnetism → → m≠0 s ≠0 µr > ~1 (Mn2+, Cu2+, Fe3+ ) (orientamento microscopico medio) (mean microscopic orientation) ferromagnetismo µr >> 1 (Fe, Co, Ni ) ferromagnetism → → m ≠ 0 s ≠ 0 (full macroscopic orientation) (orientamento macroscopico completo) µr = f(T) D. SCANNICCHIO 2009 T > Tcurie ferro- para-magnetismo 14/22 CIRCULATION THEOREM i y o z x → dα r ds B=µ → B i 2π r legge e Savart Biot di andBiot Savart’s law (circonferenza) (circumference) i n → circuitazione di B circulation of → =∑ Bi Δsi = → i =1 → → ⌠ ⌠ = B ds = ⌡ ⌡ (circumference) (circonferenza) D. SCANNICCHIO 2009 2π ⌠ µi µ i dα = ds = 2π r ⌡ 2π 0 15/22 CIRCULATION THEOREM 2π µ i⌠ µi dα = = 2π ⌡ 2π α 2π 0 0 teorema della circuitazione circulation theorem (teorema di Ampère) (Ampère’s theorem) µ i 2π = =µi 2π → ⌠ B→ ds ⌡ =µi general validity (line connected to the circuit) validità generale (linea concatenata al circuito) conseguenza : consequences: → B not non conservative conservativo (see #17) D. SCANNICCHIO 2009 16/22 B NOT CONSERVATIVE forza non conservativa not conservative force: : ⌠ ⌡ dL → → ⌠ = F ds ⌡ ≠0 proprietà matematica mathematical property generalizzabile generalizable to a any qualsiasi solo to alle forze kind ofvettore, vectorsnon not only forces → ⌠ X→ ds ⌡ ≠0 → vector X non not conservative vettore conservativo teorema della circuitazione circulation theorem: conseguenza : consequence → → ⌠ ⌡ B ds = µ i D. SCANNICCHIO 2009 → B not non conservative conservativo 17/22 CIRCULATION THEOREM linea NON connected concatenatatoalthe circuito line NOT circuit VUOTO VACUUM i r2 r1 → → → . B AB = – B. → CD → → → → B . DA = B. BC = 0 C α B D → ⌠ B→ ds ⌡ l A y o z x =0 materia : linee chiuse in matter: closed linessempre always concatenate connected to alcircuit circuito(atomic (microspire atomiche) micro-coils) in vacuum: closed lines without currents D. SCANNICCHIO 2009 18/22 LORENZ’S FORCE EFFECTS → → : case lar particu uniform , ⊥ v caso particolare : B uniforme → B: → B R . → → v F +q ingoing uscente outgoing entrante dv FT = m aT = m =0 dt 2 m v FN = m aN = =qvB R motion uniformuniforme circular moto circolare D. SCANNICCHIO 2009 19/22 LORENZ’S FORCE EFFECTS FT = m aT = m dv = 0 dt 2 m v FN = m aN = =qvB R L = ΔTEk== 00 mv R= qB q v 2 π ω= = =m B R T q di m ement of measurmisura D. SCANNICCHIO 2009 20/22 LORENZ’S FORCE EFFECTS → → : case: B uniforme, v general in generale generico general ry spiral trajecto traiettoria elicoidale → v⊥ q y z o D. SCANNICCHIO 2009 → v → v ⁄⁄ x 21/22 LORENZ’S FORCE EFFECTS → forzaLorentz di Lorentz ’s force → → F= qv∧B → in generale seinpresente un campo elettrico field E : an electric present general ifanche → → → → F = qE + q v ∧ B velocitydiselector selettore velocità → F → + – D. SCANNICCHIO 2009 F=qE–qvB=0 B + v>E B E v = → +q B E – v<E B 22/22