DISPENSA DI FISICA CLASSE I A La fisica e il metodo sperimentale L'uomo, spinto dal desiderio di conoscere e, quindi, di dominare il mondo che lo circonda e anche dal senso inventivo di realizzare nuovi fatti per migliorare le sue condizioni, ha cercato nel corso dei secoli di descrivere, coordinare e spiegare i fenomeni naturali. Per fenomeno naturale non si deve intendere qualcosa di insolito e straordinario ma qualsiasi fatto che avviene in natura. Attraverso lo studio della fisica (dall'antico greco (poet; = natura) si é perseguito e si continua a perseguire come scopo ultimo la conoscenza dei fenomeni naturali. Certamente la visione che oggi si ha del mondo non é la stessa di quella di ieri, né sarà eguale a quella di domani. Se si vuole, pero, che il discorso fisico non cambi da un momento all'altro e che le grandi teorie su cui esso si basa non si riducano a semplici manifestazioni del pensiero, quali sono le vie che bisogna seguire? La risposta sta nel modo in cui vengono poste le basi del discorso fisico. Sevi é un metodo che più degli altri permette di conservare le conquiste fatte e farne delle nuove, questo é il metodo sperimentale; esso fu introdotto da Galileo Galilei (1) ed é basato sulla osservazione di ogni fenomeno, sull'esperimento e sulla misurazione. Illustriamo quanto abbiamo detto con un esempio. Si consideri la caduta dei gravi nell'aria: si trova che corpi diversi per forma e per costituzione seguono movimenti differenti. Questa prima fase dello studio di un fenomeno cosi come avviene in natura costituisce l'osservazione. Si segua il fenomeno della caduta dei gravi nel tubo di Newton, cioè in un lungo tubo svuotato dell'aria: si constata che tali corpi, nel vuoto, si muovono allo stesso modo. Questa seconda fase dello studio di un fenomeno, in condizioni provocate artificialmente, ben controllabili e ripetibili, costituisce l'esperimento o esperienza fisica. Si stabilisca, quindi, con operazioni effettuate mediante regoli metrici quali sono le posizioni, iniziale e finale, occupate da un corpo in caduta libera e con operazioni effettuate mediante orologi se ne determinino gli istanti corrispondenti. Quest'ultima fase dello studio di un fenomeno da un punto di vista quantitativo costituisce la misurazione. Si riesce cosi a provare che un grave in caduta libera nel vuoto aumenta la propria velocità di circa 10 metri al secondo per ogni secondo e che percorre nel primo secondo circa 5 metri, in quello successivo 15 metri, nel terzo 25 metri e cosi via. Grandezze fisiche fondamentali e derivate Gli elementi fondamentali del discorso fisico sono le grandezze fisiche, dal cui legame scaturiscono le Leggi Fisiche. Le grandezze fisiche vengono definite seguendo il metodo operativo, stabilendo cioè quali criteri e quali procedimenti sono necessari per misurare le grandezze stesse. Più precisamente, diciamo che le grandezze fisiche sono ogni insieme di enti per i quali é possibile stabilire, sempre mediante operazioni fisicamente effettuabili, quanto segue: 1) l'eguaglianza e la diseguaglianza tra due elementi dell’insieme; 2) la somma di due o più elementi dell’insieme; 3) l'elemento dell’insieme che si sceglie come unita di misura. II metodo operativo su cui é basata la definizione delle grandezze fisiche trae la sua origine in gran parte dai fatti comuni della vita quotidiana. Come facciamo, ad esempio, per misurare ii perimetro di una stanza? Quando stabiliamo, ad occhio, che le lunghezze delle pareti opposte sono eguali mentre quelle di due pareti consecutive sono pag. 2 diverse, non facciamo altro che applicare il primo criterio, cioè il criterio di eguaglianza e diseguaglianza; se poi stabiliamo che il perimetro della stanza é dato dalla somma delle lunghezze delle quattro pareti, applichiamo il secondo criterio, cioè il criterio della somma; se infine prendiamo come lunghezza di riferimento il metro, applichiamo il terzo criterio, cioè la scelta dell’unita di misura. La misurazione poi viene effettuata nel modo seguente. Facciamo coincidere un estremo del metro con l’estremità di una parete della stanza e, trasportando successivamente il metro lungo la parete su una retta orizzontale, constatiamo quante volte vi è contenuto. II numero cosi ottenuto da la misura della lunghezza della parete. Ripetiamo l'operazione per le altre pareti: la somma delle misure delle lunghezze delle quattro pareti da, infine, la misura del perimetro della stanza. Un insieme di grandezze per le quali si possono stabilire i criteri 1, 2 e 3 costituisce un insieme di grandezze omogenee. Il rapporto tra una grandezza dell’insieme ed un'altra grandezza dell’insieme stesso, scelta come unita di misura, definisce la misura della grandezza. Il rapporto tra due grandezze omogenee, misurate con la stessa unita di misura, definisce una grandezza adimensionale. In conclusione le grandezze fisiche sono tutti gli enti misurabili per i quali cioè si può definire, operativamente, il confronto, la somma e l’unità di misura. Precisiamo che l'operazione mediante la quale si ottiene la misura di una grandezza é detta misurazione. Le grandezze fisiche vengono generalmente distinte in grandezze fondamentali o primarie e grandezze derivate o secondarie. Sono grandezze fondamentali quelle la cui definizione non dipende da altre grandezze mentre si dicono derivate tutte quelle la cui definizione dipende dalle grandezze fondamentali. La lunghezza e la sua unità di misura La nozione di spazio e quella di lunghezza, ad esso strettamente legata, sono alla base di tutta la geometria. In fisica la lunghezza viene considerata grandezza fondamentale e come tale se ne dà solamente la definizione operativa, precisando i criteri e le operazioni che consentono la sua misura. Nei casi più comuni per misurare una lunghezza si può usare il regolo rettilineo o riga. Mediante il regolo rettilineo si pub stabilire: 1) se due lunghezze sono eguali o diverse; 2) qual é la somma di due o più lunghezze. Effettuato il confronto e la somma di due o più lunghezze, occorre stabilire l'unità di misura. UNITA DI MISURA DELLA LUNGHEZZA Come unità di misura della lunghezza é stato scelto il metro (m), che viene definito nel modo seguente: il metro é la distanza, alla temperatura di 0 °C. tra due tratti paralleli riportati su una particolare sbarra di platino-iridio, conservata nell'Archivio internazionale di Pesi e Misure di Sevres presso Parigi. pag. 3 Il tempo e la sua unità di misura La nozione di tempo ha origine dalla nostra esperienza basata sulla percezione del susseguirsi degli eventi da noi osservati. Ora, anche se questa percezione ci consentisse di distribuire gli eventi stessi secondo un ordine crescente di << prima-dopo >> ovviamente, una tale scala temporale sarebbe puramente qualitativa, oltre che soggettiva (tempo fisiologico). Si rende quindi necessario eliminare dal concetto di tempo ogni elemento fisiologico e concretizzarlo in quello di grandezza fisica (tempo fisico). In fisica, pertanto, il tempo si considera ente primitivo e si definisce operativamente, come grandezza fondamentale, la durata o intervallo di tempo, cioè la differenza tra due tempi detti, rispettivamente, istante finale e istante iniziale. Ovviamente, nella scala dei tempi qualsiasi istante si può scegliere come riferimento e porlo, per convenzione, eguale a zero. Come unita di misura dell'intervallo di tempo é stato scelto il secondo solare medio (s) La massa e la sua unità di misura Una caratteristica dei corpi e la loro massa che solitamente viene definita come la quantità di materia contenuta nei corpi stessi. Per effettuare le operazioni che conducono alla misura della massa eguali o diversi intervalli di tempo. di un corpo si può usare la bilancia. Con tale strumento si pub stabilire: 1) se due masse sono eguali o diverse. 2) qual é la somma di due o più masse. UNITA DI MISURA DELLA MASSA Come unità di misura della massa é stato scelto il chilogrammo (kg) cosi definito: il chilogrammo é la massa di un blocchetto cilindrico di platino-iridio conservato nell’Archivio Internazionale di Pesi e Misure di Sévres presso Parigi. Grandezze scalari e grandezze vettoriali Il numero che rappresenta la misura della grandezza seguito dall’unità di misura è detto: Modulo o Intensità della grandezza. Tali grandezze sono dette Scalari. Per tutte le grandezze per la cui definizione non occorrono altri elementi per la loro definizione all’infuori del modulo o l’intensità sono dette Grandezze Scalari. Se per esempio consideriamo un punto materiale (rappresentazione grafica di un punto che non ha dimensione) può compiere degli spostamenti. Per descrivere tale grandezza fisica c’è bisogno di introdurre altri elementi. Per determinare lo spostamento di un punto materiale nello spazio c’è bisogno di introdurre altre grandezze oltre al modulo o intensità, questo perché nello spazio il punto materiale può compiere infiniti spostamenti in qualsiasi direzione ed in qualsiasi verso sempre con lo stesso modulo. Quindi per definire lo spostamento di un punto materiale si introdurranno altre due elementi: la direzione ed il verso. Tutte le grandezze per le quali oltre al modulo o intensità per la loro definizione c’è bisogno anche di direzione e verso, sono dette Grandezze Vettoriali DEFINIZIONE DI VETTORE Il vettore è un segmento orientato nello spazio individuato mediante i seguenti elementi caratteristici: direzione, verso, e intensità o modulo. pag. 4 In conclusione possiamo dire che lo spostamento è una grandezza vettoriale. Cenni di calcolo vettoriale a) SOMMA DI VETTORI Dati due vettori V1=OV1 e V2=OV2 applicati ad uno stesso punto O e formanti un certo angolo, si definisce Vettore Somma o Risultante il vettore V=OV individuato dalla diagonale del parallelogramma che ha per lati i vettori assegnati (regola del parallelogramma). Se i vettori sono più di due il vettore somma è dato dal lato di chiusura del poligono avente come lati i vettori assegnati (regola del poligono). b) DIFFERENZA DI DUE VETTORI Si definisce vettore opposto al vettore dato il vettore che ha la stessa intensità, la stessa direzione, ma verso contrario. Dati due vettori V1=OV1 e V2=OV2 applicati allo stesso punto O e formanti un certo angolo, si definisce differenza dei due vettori il vettore V=OV ottenuto dalla somma vettoriale di V1 e dell’opposto di V2. pag. 5 c) PRODOTTO DI UNA GRANDEZZA SCALARE PER UN VETTORE Dato un vettore V=OV ed un numero reale n (scalare) si definisce prodotto di una grandezza scalare per un vettore il U=nxV avente la stessa direzione del vettore V, lo stesso verso, e intensità = nxV. d) SCOMPOSIZIONE DI UN VETTORE IN DUE DI DIREZIONE ASSEGNATE Dato un vettore V=OV e due direzioni Or1 ed Or2, dall’estremo V conduciamo le parallele alle due direzioni, e i punti V1 e V2, individuati su r1 e r2 determinano i vettori V1=OV1, e V2=OV2 (procedimento inverso alla somma). Metodi di misurazione delle grandezze Fisiche Come si é visto, la determinazione quantitativa di una grandezza fisica si effettua attraverso la misurazione, operazione il cui risultato é la misura che esprime il rapporto tra la grandezza da misurare ed un'altra grandezza ad essa omogenea, presa come unità di misura. La misurazione di una grandezza fisica può essere effettuata seguendo tre metodi diversi. a) Metodo di misurazione diretta: è’ detto anche metodo di misurazione relativa e consiste nel confrontare la grandezza che si vuole misurare con un'altra della stessa specie scelta come campione o unità di misura. Questo metodo si applica per la misurazione delle grandezze fondamentali. b) Metodo di misurazione indiretta: è detto anche metodo di misurazione assoluta e consiste nel determinare il valore della grandezza in esame misurando direttamente le altre grandezze da cui essa dipende secondo una relazione ben definita. pag. 6 Così, per esempio, per misurare il volume di un corpo a forma cilindrica si misurano diretta mente l'altezza h ed il raggio r del cilindro e mediante la formula V = π r2 h se ne ricava il volume. c) Metodo di misurazione con strumenti tarati: questo metodo consiste nell’impiego di strumenti tarati, cioè di particolari dispositivi muniti di scale e di indici le cui indicazioni sono state controllate in base alla misurazione diretta o indiretta delle grandezze in esame; tale operazione viene detta taratura dello strumento. Calcolo degli errori Per determinare la misura delle grandezze fisiche il metodo più: diffuso é quello con strumenti tarati in quanto la misura stessa si riconduce alla osservazione della posizione di indici su scale, operazione che si può eseguire con elevata precisione. Se si ripetono varie volte le misurazioni di una grandezza fisica, si otterranno dei valori x1, x2,,,xn che, in generale, differiscono tra loro. Seguendo il principio della media di Gauss (o aritmetica), si assumerà come valore più probabile della grandezza in esame il valore dato dalla media aritmetica X=x1+x2+,,,+xn/n E bene osservare che non esistono misure esatte in quanto in ogni misurazione si commettono degli errori che possono essere accidentali o sistematici. Gli errori accidentali dipendono da circostanze perturbatrici fortuite; essi influiscono nelle misure, ottenute eseguendo una serie di misurazioni di una grandezza fisica, ora in un senso, ora nell’altro e con intensità variabile. Dato che gli errori accidentali sono legati ad altri fenomeni non controllabili che si sovrappongono al fenomeno in esame influenzandolo in modo del tutto casuale, essi non si possono mai eliminare (esempio differenza di temperatura a causa della quale gli strumenti si dilatano o si restringono ecc.). Gli errori sistematici sono quelli che dipendono da difetti costruttivi degli strumenti, vizi nel metodo usato, particolare comportamento dell'osservatore, ecc.. Essi influiscono sul risultato sempre nello stesso senso e con la stessa intensità e si possono eliminare o ridurre variando i metodi, gli strumenti e gli osservatori. Il calcolo degli errori presuppone la conoscenza del valore vero della grandezza da misurare; poiché ciò é impossibile, si ricorre ai calcolo del valore più probabile delle varie misure. Se non e richiesta una elevata precisione e se le misure sono poco numerose, é sufficiente calcolare l'errore assoluto massimo dato dalla semidifferenza tra il valore massimo XM ed il valore minimo Xm delle misure ottenute: a=XM-Xm/2 Tenendo conto dell'errore assoluto, la misura della grandezza in esame si esprime con la notazione: X=X+/- a pag. 7 Più significativo dell'errore assoluto, per stimare la precisione di una misura, é l'errore relativo definito dal rapporto tra l'errore assoluto e il valore medio della grandezza; cioè: r= a/X Se poi si vuole l’errore relativo percentuale, basta moltiplicare per cento quello relativo. Supponiamo, ad esempio, di aver misurato la massa di un anello d'oro con una bilancia d'analisi, avente la sensibilità di un milligrammo, e di aver eseguito 6 misurazioni i cui risultati sono: m1 = 7,580 g m2 = 7,583 g m3 = 7,530 9 m4 = 7,581 g m5 = 7,584 g m6 = 7,530 9 La media aritmetica dei sei valori da il valore della massa del corpo: m = m1 +m2+m3+m4+m5+m6 / 6 =7,581 g l’errore assoluto massimo è: a = 7,584-7,582 / 2 = 0,002 g La massa dell’anello sarà: m = (7,581 +/- 0,002) g L’errore percentuale sarà: 0,0026% pag. 8 Introduzione alla meccanica La meccanica La meccanica é Ia più antica delle scienze fisiche: essa infatti si occupa del movimento e questo è uno dei fenomeni naturali che per primo ha destato l'interesse dell'uomo. Di solito la meccanica si suddivide in tre parti: 1. la cinematica che studia il movimento dei corpi senza tener conto delle cause che Io producono; 2. Ia dinamica che studia il movimento dei corpi e Ie sue cause; 3. la statica che studia le condizioni di equilibrio dei corpi. Nell'idea di movimento sono intimamente legati i concetti primitivi di posizione e di tempo. Un corpo é in movimento se la sua posizione, misurata dalla distanza da un altro corpo, considerato fisso, varia al variare del tempo. Cosi, per esempio, stando nel vagone di un treno, diciamo di essere in movimento quando la nostra posizione, rispetto a quella della strada ferrata, cambia istante per istante. Ma noi possiamo anche muoverci all'interno del vagone che é in movimento rispetto alla strada ferrata, la quale, a sua volta, essendo fissata alla Terra, é in movimento rispetto al Sole e cosi via. E facile capire che se riferissimo il nostro movimento al Sole, anziché alle pareti del vagone, il movimento stesso risulterebbe molto complicato. D'altra parte non potendo stabilire l'esistenza di un qualcosa che occupi nell'universo sempre la stessa posizione, non ha significato parlare di moto assoluto e, pertanto, il moto di un corpo é sempre relativo, cioè riferito ad un altro corpo arbitrariamente scelto, che si considera fisso e che viene detto sistema di riferimento. Sistemi di riferimento Come é stato precisato nel paragrafo precedente un corpo si muove relativamente ad un sistema di riferimento quando la sua posizione varia nel tempo. Ora, per determinare il movimento di un corpo, bisognerebbe conoscere il movimento di ciascuna particella di cui esso é costituito e ciò ovviamente, è impossibile. Pertanto, in una prima trattazione del movimento di un corpo, prescinderemo dalle sue dimensioni, dalla sua forma, dalla sua costituzione chimica, eccetera, e Io considereremo come un punto, che chiameremo punto materiale o particella. Si tenga però sempre presente che il punto materiale, per definizione privo di estensione, é una astrazione accettabile in quei casi in cui si rende necessaria una notevole semplificazione dei problemi che si debbono risolvere. Per quanto riguarda il sistema di riferimento, sceglieremo una terna di assi cartesiani ortogonali XYZ aventi l'origine in un punto O e fissa nello spazio. Ai fini pratici tale terna di assi si considera solidale con Ia Terra e viene detta sistema di riferimento terrestre o da laboratorio. Riferendoci alla figura diciamo che un punto materiale P é in quiete o in moto quando le sue coordinate, cioè Ie distanze x, y e z, rispettivamente, dai piani YZ, X2 e XY, si mantengono costanti o variano nel tempo. pag. 9 Se il punto P é in movimento, per conoscere istante per istante la sua posizione, debbono essere note le coordinate x, y e z dei punto stesso in funzione del tempo t. Il luogo delle posizioni occupate dal punto P durante il suo movimento é una linea a cui si da il nome di traiettoria; questa può essere una retta o una curva. Nel primo caso il moto si dice rettilineo, nel secondo caso curvilineo. Quando il moto del punto materiale avviene in un piano, il sistema di riferimento si riduce a due assi cartesiani ortogonali XY di origine O, appartenente al piano su cui si muove il punto stesso. Se infine il moto del punto avviene lungo una retta, il sistema di riferimento si riduce ad un solo asse X di origine O. pag. 10 A chiarimento di quanto detto facciamo un esempio. Supponiamo che un punto materiale si muova su un piano e che, relativamente al sistema di assi cartesiani ortogonali XY di origine O, siano note le coordinate del punto in funzione del tempo: x=15t, y=—5t2 Moto di un punto materiale definito dalle relazioni: x = 15 t, y = — 5t2. In questo caso il movimento del punto é perfettamente individuato in quanto si può conoscere la sua posizione in qualsiasi istante. Le prime grandezze che caratterizzano il movimento: velocità e accelerazione a) Velocità. Riferito al movimento dei corpi, il concetto di velocità esprime intuitivamente la rapidità con cui varia la loro posizione; in esso, quindi, sono contenuti i concetti primitivi di lunghezza e di tempo. Cosi, per esempio, diciamo che un'auto é tanto più veloce quanto minore e il tempo che impiega a compiere un dato percorso. Il cammino che effettivamente percorre un punto materiale in movimento si suole chiamare, anche se impropriamente, spazio percorso. Non si confonda pero Io spazio percorso da un punto materiale, che é una grandezza scalare, col suo spostamento, che é una grandezza vettoriale, il cui modulo e dato dalla distanza tra una data posizione P0 occupata dal punto materiale ed un'altra posizione P, indipendentemente dal modo come il punto passa da Po a P, e avente la direzione della retta P0-P e verso da P0 a P. Volendo precisare il concetto di velocità da un punto di vista quantitativo, si può procedere nel modo seguente. Sia L la traiettoria che descrive il punto materiale in movimento; fissato su L un punto O come riferimento, siano P0, e P le posizioni occupate dal punto mobile negli istanti t0 e t; poniamo OP = s0 ed OP=s pag. 11 Il rapporto tra la lunghezza dell'arco PP0 = (s — s0) percorso e l'intervallo di tempo (t — t0) impiegato a percorrerlo, definisce la velocità scalare media. VELOCITA SCALARE MEDIA La velocità scalare media di un punto materiale in movimento é il rapporto tra lo spazio da esso percorso ed il tempo impiegato a percorrerlo. Considerando intervalli di tempo (t — t0) via via più piccoli, le posizioni P0 e P, occupate dal punto materiale in movimento, sono sempre più: vicine; si troveranno cosi velocità medie scalari tendenti ad un valore limite che si chiama velocità scalare istantanea. Precisiamo che la velocità, cosi come é stata definita, é una grandezza fisica derivata da una lunghezza e da un intervallo di tempo; di conseguenza la sua unita di misura nel SI è il metro al secondo (m/s) Chiariamo il concetto di velocità scalare media considerando, per esempio, il moto di un ciclista lungo una pista. Scelta la posizione O come riferimento, fissiamo mediante un orologio l'istante t0 in cui il ciclista passa per la posizione A: sia, per esempio, t0 = 30 s. Segniamo quindi l'istante t in cui il ciclista stesso passa per la posizione B e sia, per esempio, t = 40 s. Misuriamo gli spazi so = OA ed s = OB e siano rispettivamente so = 125 m ed s = 245 m. La velocità scalare media del ciclista nel tratto AB é: pag. 12 Nella definizione di velocità scalare non vengono precisati la direzione ed il verso del movimento del punto materiale. Per arricchire il concetto di velocita é conveniente considerare la velocità stessa come grandezza vettoriale. Sia L la traiettoria descritta dal punto materiale in movimento; fissato su L un punto O come origine e scelto come verso positivo quello antiorario, siano P0 e P le posizioni occupate dal punto stesso negli istanti t0 e t. Se i vettori s0 = OP0 ed s = OP rappresentano, rispettivamente, gli spostamenti negli istanti considerati, il vettore definito dal rapporto tra lo spostamento P0P= (s — s0), e l'intervallo di tempo (t – t0) in cui tale spostamento é avvenuto, rappresenta la velocità vettoriale media. VELOCITA VETTORIALE MEDIA La velocità vettoriale media di un punto materiale in movimento é il rapporto tra lo spostamento da esso subito ed il tempo durante il quale é avvenuto lo spostamento stesso. Considerando intervalli di tempo (t — t0) via via più piccoli, le posizioni P0, e P, occupate dal punto materiale in movimento, sono sempre più vicine; si troveranno, pertanto, velocità vettoriali medie tendenti ad un valore limite V che si chiama velocità vettoriale istantanea. pag. 13 La velocità vettoriale istantanea nel punto P0 si può rappresentare con un vettore V di origine in P0, avente direzione tangente alla traiettoria in P0, verso coincidente con quello del movimento e intensità eguale a quella della velocità scalare istantanea. b) Accelerazione. Il concetto di velocità da solo non basta per caratterizzare il movimento di un punto materiale; occorre anche conoscere come essa varia istante per istante. Siano v0 e v rispettivamente le velocità di un punto materiale nell'istante t0 in cui occupa la posizione P0, e nell'istante t quando occupa la posizione P. Il rapporto tra la variazione di velocità (v – v0), subita dal punto materiale in movimento ed il corrispondente intervallo di tempo (t — t0) in cui tale variazione avviene, é l'altra grandezza vettoriale che insieme alla velocità caratterizza il movimento: essa viene detta accelerazione media. ACCELERAZIONE MEDIA L'accelerazione media é il rapporto tra la variazione di velocità subita da un punto materiale in movimento ed il tempo durante il quale é avvenuta detta variazione. Considerando intervalli di tempo (t — to) sempre più piccoli si avranno accelerazioni medie sempre più vicine ad un valore limite che si chiama accelerazione istantanea. Precisiamo che l'accelerazione si può definire anche come la variazione di velocità subita da un punto materiale in movimento nell'unità di tempo. La sua unità di misura nel SI é il metro al secondo al quadrato (m/s2). Poiché la velocità di un punto materiale in movimento può variare sia di intensità che di direzione, si definiscono due tipi diversi di accelerazione. Sia a il vettore che rappresenta l'accelerazione istantanea di un punto materiale quando occupa la posizione P della traiettoria L su cui si muove. Scomponiamo tale vettore in due vettori uno at, in direzione della tangente in P alla traiettoria ed uno an in direzione della normale in P alla traiettoria pag. 14 stessa; i vettori at, ed an , vengono detti, rispettivamente, accelerazione tangenziale ed accelerazione centripeta o normale. L'accelerazione tangenziale esprime la variazione di intensità della velocità nell'unità di tempo mentre l'accelerazione centripeta esprime la variazione di direzione della velocità nell'unità di tempo. pag. 15 Leggi della dinamica e gravitazione universale Considerazioni preliminari Consideriamo una pallina di ferro appoggiata su un tavolo orizzontale e in quiete relativamente ad esso. L'esperienza mostra che affinché la pallina si metta in movimento rispetto al tavolo occorre una causa esterna, che potrebbe essere una piccola spinta, l'azione di una molia, l'attrazione di una calamita, o semplicemente la mancanza del vincoio, che é il tavolo. In quest'ultimo caso il movimento della pallina é dovuto all'attrazione che la Terra esercita su di essa. Supponiamo ora che la pallina si muova su una guida rettilinea. Anche questa volta l'esperienza mostra che per variare la sua velocita, o per fermarla, occorre una causa esterna che potrebbe essere l'azione esercitata da un ostacolo posto sul cammino della pallina o semplicemente l'attrito. In ogni caso, possiamo dire che la variazione di velocità della pallina non e mai un fatto spontaneo e richiede sempre una determinata causa. Osserviamo inoltre che, finché la pallina é appoggiata sul tavolo, essa resta ferma non perché viene a mancare l’attrazione da parte della Terra, ma in quanto c'é il tavolo a impedirne il movimento. In questo caso si puo constatare che la causa che metterebbe in movimento la pallina, se fosse libera, si manifesta, invece, attraverso Ie deformazioni che subiscono sia la pallina che il tavolo. Dalle osservazioni fatte, possiamo dire che: la forza é la causa della variazione di velocita o della deformazione che subisce un corpo al quale viene applicata la forza stessa. II concetto di forza e quelli di massa e acceierazione sono alla base della dinamica, cioe del moto e le sue cause. Questa indagine si fonda su tre leggi o principi che furono enunciati dal fisico inglese Isaac Newton (1642-1727) in forma assiomatica nella sua opera <<PhiIosophiae naturalis principia mathematica» pubblicata nell'anno 1687. Occorre sottolineare che nella formulazione delle leggi della dinamica di Newton i corpi vanno considerati come particelle o punti materiali e la loro massa é ritenuta costante durante il loro movimento (meccanica classica o di Galilei-Newton). Il principio d’inerzia La prima legge della dinamica di Newton è nota storicamente come legge o principio d’inerzia. Essa fu intuita da Galileo Galilei come conseguenza dei suoi studi sul moto dei gravi lungo un piano inclinato quando, in particolare, l'angolo di inclinazione del piano stesso é nullo (piano orizzontaie). Lanciando un grave su una superficie orizzontale, il grave stesso procede con velocita gradualmente decrescente; Galilei comprese che tale variazione di velocita era dovuta aIl'attrito e alla resistenza dell'aria. Riducendo via via tali resistenze, il moto tende sempre ad un moto rettilineo uniforme; nel caso ideaie che queste resistenze venissero completamente eliminate, il corpo dovrebbe procedere sempre con velocita costante in intensità, direzione e verso. Nei caso di un corpo inizialmente fermo su un piano orizzontaie é evidente che in assenza di forze esso perseveri nel suo stato di quiete. Questo fatto era gia noto sin dai tempi di Aristotele per il quale non era altrettanto evidente come un corpo si potesse mantenere in movimento senza l'intervento di una forza esterna. Bastava pero una analisi piu approfondita per riconoscere che tutti i movimenti si estinguono, se non sono sostenuti da forze attive, a causa delle forze passive (attrito e resistenza pag. 16 dell'aria). Cio fu compreso, come si è detto, prima da Galilei e successivamente da Newton, al quale si deve la formulazione definitiva del principio d'inerzia che si puo ritenere ancora valida. PRINCIPIO D'lNERZlA (prima legge della dinamica o di Newton) Un corpo rimane nel suo stato di quiete o di moto rettilineo uniforme sino a quando non agiscono su di esso forze esterne. Concludiamo facendo presente che il principio di inerzia non puo essere verificato sperimentalmente in quanto non si riesce ad isolare in maniera completa alcun corpo o sistema di corpi in movimento. La legge fondamentale della dinamica Come abbiamo detto nel precedente paragrafo, se ad un corpo, inizialmente fermo o in moto rettilineo uniforme rispetto ad un sistema di riferimento, non viene applicata alcuna forza, esso continua a mantenere il proprio stato di quiete o di moto rettilineo uniforme. Se pero il corpo é soggetto ad una forza, si osserva che la sua velocita cambia istante per istante; cio vuol dire che, per effetto della forza, il corpo subisce una accelerazione. Come si comportano corpi aventi massa differente quando vengono soggetti separatamente all'azione di una stessa forza? Per rispondere a tale domanda ci serviremo del dispositivo sperimentale in figura costituito da un carrello A che puo essere messo in movimento su una guida rettilinea ed orizzontale. Dopo aver determinato la massa m del carrello, poniamo il carrello stesso nella posizione M ed applichiamo ad esso una forza tramite il pesetto P, legato al filo f che passa per la gola della carrucola C. Poiché il carrello é libero di spostarsi lungo la guida, esso, sotto l'azione di tale forza, si mettera in movimento. Misuriamo l'intervallo di tempo occorrente per portare il carrello dalla posizione di quiete M in un'altra posizione N e calcoliamo la velocita del carrello stesso nell'istante in cui passa per N. In questo modo si puo determinare l'accelerazione del carrello mediante il rapporto tra la variazione della velocita da esso subita nel passare da M ad N ed il corrispondente intervallo di tempo; sia a il pag. 17 modulo di questa accelerazione. Mettiamo ora sul carrello dei blocchetti B in modo da farne variare la massa e ripetiamo piu volte l'esperienza lasciando invariato il pesetto P e, quindi, la forza applicata al carrello. Se m1, m2, m3, sono, per ciascuna esperienza, Ie masse complessive (carrello più blocchetti)e se a1, a2, a3, sono i corrispondenti valori dell'accelerazione, si verifica, entro i Iimiti degli errori sperimentali, che i prodotti m1xa1, m2xa2, m3xa3, risultano tutti eguali tra loro ed al prodotto mxa trovato inizialmente; si ha quindi: m1xa1 = m2xa2 = m3xa3 = ma. Sulla base dei fatti sperimentali esaminati, possiamo stabilire che, sottoponendo corpi diversi alla stessa forza, il prodotto della massa m di ciascun corpo per l'accelerazione a da esso subita si mantiene costante. Tale prodotto, che indicheremo con F, si puo prendere come valore della forza stessa, cioé: F=mxa (3-1) L'esperienza mostra inoltre che la forza e l'accelerazione hanno Ia stessa direzione e Io stesso verso. Tenendo presente che la massa di un corpo è una grandezza scalare mentre la forza e l'accelerazi0ne sono grandezze vettoriali, la (3-1) si scrivera: F=mxa (3-2) La (3-2) e l'equazione fondamentale della dinamica; essa esprime la Iegge fondamentale della dinamica o seconda Iegge di Newton. pag. 18 LEGGE FONDAMENTALE DELLA DINAMICA (seconda legge della dinamica o di Newton) La forza applicata ad un corpo libero di muoversi nella direzione della forza é uguale al prodotto della massa del corpo per I'accelerazione che esso subisce. Prima di chiudere questo paragrafo facciamo an cora due osservazioni: 1) se ad uno stesso corpo si applicano successivamente forze diverse, si verifica che le accelerazioni da esso subite sono direttamente proporzionali alle intensita delle forze stesse: cio vuol dire che Ia massa di un corpo si mantiene costante ed é una sua caratteristica; 2) se a corpi aventi massa diversa si applicano forze eguali, le accelerazioni da essi subite sono inversamente proporzionali alle loro masse: cio vuol dire che la massa dei corpi è un ostacolo al loro movimento o, in termini più appropriati, che la massa dei corpi é la misura della loro inerzia. Per questa sua caratteristica la massa viene detta massa inerziale mentre quella misurata con una bilancia e detta massa pesante o gravitazionale. Nel Sistema internazionale la forza e una grandezza derivata: infatti, come abbiamo visto, essa viene definita, in base alla relazione (3-1), come prodotto della massa per l'accelerazione. La sua unita di misura é il newton (N) del quale si puo dare la seguente definizione: il newton é l'intensita di quella forza che agendo su un corpo avente la massa di 1 kg gli imprime l'accelerazione di 1 m/s2. La legge di gravitazione universale Prendendo in esame le ieggi sul moto dei pianeti che Keplero, in seguito alle osservazioni fatte dall'astronomo Tycho Brahe, aveva formulato empiricamente, Newton pervenne nel 1687 alla legge di gravitazione universale. LEGGE DI GRAVITAZIONE UNIVERSALE Tra due corpi aventi rispettivamente massa m1 ed m2, i cui centri si trovano alla distanza r. si esercita una forza di mutua attrazione agente in direzione della retta congiungente i centri stessi e Ia cui intensità é direttamente proporzionale al prodotto delle masse ed inversamente proporzionale al quadrato della Ioro distanza. nella quale G é una costante che viene detta costante di gravitazione universale. ll valore di tale costante fu determinato per via sperimentale Ia prima volta da Lord Cavendish nel 1798; riferendoci al SI e alle misure più recenti, si ha: G = 6,673x10-11 Nm2/kg2 pag. 19 Leggi di Keplero: 1) Tutti i pianeti si muovono su orbite eilittiche di cui il Sole occupa uno dei fuochi. 2) Le aree descritte dai raggi vettori congiungenti ciascun pianeta con il Sole sono direttamente proporzionali ai tempi impiegati a descriverle. 3) I quadrati dei periodi di rivoluzione di ciascun pianeta sono direttamente proporzionali ai cubi degli assi maggiori delle Ioro orbite. La legge di gravitazione universale é stata, e continua ad essere, alla base del progresso della meccanica astronomica e terrestre. Cosi il pianeta Nettuno fu scoperto nel 1846 in quanto la sua esistenza era stata prevista da Leverrier per spiegare, in base alla legge di gravitazione universale, Ie perturbazioni dell'orbita del pianeta Saturno; analogamente é awenuto per Ia scoperta del pianeta Plutone fatta nel 1930. Sebbene ancora oggi non si conosca l'ente fisico da cui traggono origine e si trasmettono le forze gravitazionali, la legge di Newton occupa un posto preminente nel campo della meccanica. Essa e ancora alla base del calcolo delle orbite dei satelliti artificiali e della programmazione dei viaggi che le astronavi gia compiono nell'esplorazione del sistema solare. Il peso dei corpi. Differenza tra massa e peso. La massa della Terra Lasciando cadere un corpo di massa m entro un Iungo tubo in cui é stato fatto il vuoto e disposto verticalmente, si puo provare che l'accelerazione del corpo si mantiene costante. In base alla legge fondamentale della dinamica detta accelerazione non puo essere provocata che da una forza, diretta verso ii basso secondo Ia verticale. Tale forza, come gia abbiamo avuto occasione di dire, é il peso del corpo e l'accelerazione é quella di gravità. Pertanto, se P é il peso dei corpo e g l'accelerazione di gravita, in base alla (3-1) si ha: P = mg (3-16) Ma il peso dei corpo non e altro che la forza di attrazione che la Terra esercita sul corpo stesso; indicando allora con M Ia massa della Terra e con r la distanza tra il suo centro e quello dei corpo, per Ia legge di gravitazione universale, dev'essere: P=GxMm/r2 (3-17) Da questa relazione si vede che il peso di un corpo e inversamente proporzionale al quadrato della sua distanza dal centro della Terra. Per il fatto poi che la Terra non é perfettamente sferica e ruota intorno al proprio asse, il peso di un corpo varia oltre che con l'a|titudine anche con Ia latitudine. In conclusione possiamo dire che: mentre la massa di un corpo si mantiene costante, il suo peso invece varia da luogo a luogo e di conseguenza non é una grandezza caratteristica del corpo. Dal confronto delle relazioni (3-16) e (3-17) si ha: Mg=GxMm/r2 Da cui g=GxM/r2 Pertanto i'accelerazione di gravità e indipendente dalla massa dei corpo ed e inversamente proporzionale al quadrato della sua distanza dal centro della Terra. pag. 20 Dalla relazione nota l'accelerazione di gravità g dei iuogo e Ia distanza r si puo determinare la massa M della Terra. Riferendoci, per esempio, al livello dei mare e prendendo come valori medi di g e r, rispettivamente, 9,8 m/s2 e 6371x103 m, risulta: 9 8. (6371x103)2/(6.67x10-11) = 5.96x1024 kg pag. 1 Introduzione alla Fisica La fisica e il metodo sperimentale L'uomo, spinto dal desiderio di conoscere e, quindi, di dominare il mondo che lo circonda e anche dal senso inventivo di realizzare nuovi fatti per migliorare le sue condizioni, ha cercato nel corso dei secoli di descrivere, coordinare e spiegare i fenomeni naturali. Per fenomeno naturale non si deve intendere qualcosa di insolito e straordinario ma qualsiasi fatto che avviene in natura. Attraverso lo studio della fisica (dall'antico greco (poet; = natura) si é perseguito e si continua a perseguire come scopo ultimo la conoscenza dei fenomeni naturali. Certamente la visione che oggi si ha del mondo non é la stessa di quella di ieri, né sarà eguale a quella di domani. Se si vuole, pero, che il discorso fisico non cambi da un momento all'altro e che le grandi teorie su cui esso si basa non si riducano a semplici manifestazioni del pensiero, quali sono le vie che bisogna seguire? La risposta sta nel modo in cui vengono poste le basi del discorso fisico. Sevi é un metodo che più degli altri permette di conservare le conquiste fatte e farne delle nuove, questo é il metodo sperimentale; esso fu introdotto da Galileo Galilei (1) ed é basato sulla osservazione di ogni fenomeno, sull'esperimento e sulla misurazione. Illustriamo quanto abbiamo detto con un esempio. Si consideri la caduta dei gravi nell'aria: si trova che corpi diversi per forma e per costituzione seguono movimenti differenti. Questa prima fase dello studio di un fenomeno cosi come avviene in natura costituisce l'osservazione. Si segua il fenomeno della caduta dei gravi nel tubo di Newton, cioè in un lungo tubo svuotato dell'aria: si constata che tali corpi, nel vuoto, si muovono allo stesso modo. Questa seconda fase dello studio di un fenomeno, in condizioni provocate artificialmente, ben controllabili e ripetibili, costituisce l'esperimento o esperienza fisica. Si stabilisca, quindi, con operazioni effettuate mediante regoli metrici quali sono le posizioni, iniziale e finale, occupate da un corpo in caduta libera e con operazioni effettuate mediante orologi se ne determinino gli istanti corrispondenti. Quest'ultima fase dello studio di un fenomeno da un punto di vista quantitativo costituisce la misurazione. Si riesce cosi a provare che un grave in caduta libera nel vuoto aumenta la propria velocità di circa 10 metri al secondo per ogni secondo e che percorre nel primo secondo circa 5 metri, in quello successivo 15 metri, nel terzo 25 metri e cosi via. Grandezze fisiche fondamentali e derivate Gli elementi fondamentali del discorso fisico sono le grandezze fisiche, dal cui legame scaturiscono le Leggi Fisiche. Le grandezze fisiche vengono definite seguendo il metodo operativo, stabilendo cioè quali criteri e quali procedimenti sono necessari per misurare le grandezze stesse. Più precisamente, diciamo che le grandezze fisiche sono ogni insieme di enti per i quali é possibile stabilire, sempre mediante operazioni fisicamente effettuabili, quanto segue: 1) l'eguaglianza e la diseguaglianza tra due elementi dell’insieme; 2) la somma di due o più elementi dell’insieme; 3) l'elemento dell’insieme che si sceglie come unita di misura. II metodo operativo su cui é basata la definizione delle grandezze fisiche trae la sua origine in gran parte dai fatti comuni della vita quotidiana. Come facciamo, ad esempio, per misurare ii perimetro di una stanza? Quando stabiliamo, ad occhio, che le lunghezze delle pareti opposte sono eguali mentre quelle di due pareti consecutive sono pag. 2 diverse, non facciamo altro che applicare il primo criterio, cioè il criterio di eguaglianza e diseguaglianza; se poi stabiliamo che il perimetro della stanza é dato dalla somma delle lunghezze delle quattro pareti, applichiamo il secondo criterio, cioè il criterio della somma; se infine prendiamo come lunghezza di riferimento il metro, applichiamo il terzo criterio, cioè la scelta dell’unita di misura. La misurazione poi viene effettuata nel modo seguente. Facciamo coincidere un estremo del metro con l’estremità di una parete della stanza e, trasportando successivamente il metro lungo la parete su una retta orizzontale, constatiamo quante volte vi è contenuto. II numero cosi ottenuto da la misura della lunghezza della parete. Ripetiamo l'operazione per le altre pareti: la somma delle misure delle lunghezze delle quattro pareti da, infine, la misura del perimetro della stanza. Un insieme di grandezze per le quali si possono stabilire i criteri 1, 2 e 3 costituisce un insieme di grandezze omogenee. Il rapporto tra una grandezza dell’insieme ed un'altra grandezza dell’insieme stesso, scelta come unita di misura, definisce la misura della grandezza. Il rapporto tra due grandezze omogenee, misurate con la stessa unita di misura, definisce una grandezza adimensionale. In conclusione le grandezze fisiche sono tutti gli enti misurabili per i quali cioè si può definire, operativamente, il confronto, la somma e l’unità di misura. Precisiamo che l'operazione mediante la quale si ottiene la misura di una grandezza é detta misurazione. Le grandezze fisiche vengono generalmente distinte in grandezze fondamentali o primarie e grandezze derivate o secondarie. Sono grandezze fondamentali quelle la cui definizione non dipende da altre grandezze mentre si dicono derivate tutte quelle la cui definizione dipende dalle grandezze fondamentali. La lunghezza e la sua unità di misura La nozione di spazio e quella di lunghezza, ad esso strettamente legata, sono alla base di tutta la geometria. In fisica la lunghezza viene considerata grandezza fondamentale e come tale se ne dà solamente la definizione operativa, precisando i criteri e le operazioni che consentono la sua misura. Nei casi più comuni per misurare una lunghezza si può usare il regolo rettilineo o riga. Mediante il regolo rettilineo si pub stabilire: 1) se due lunghezze sono eguali o diverse; 2) qual é la somma di due o più lunghezze. Effettuato il confronto e la somma di due o più lunghezze, occorre stabilire l'unità di misura. UNITA DI MISURA DELLA LUNGHEZZA Come unità di misura della lunghezza é stato scelto il metro (m), che viene definito nel modo seguente: il metro é la distanza, alla temperatura di 0 °C. tra due tratti paralleli riportati su una particolare sbarra di platino-iridio, conservata nell'Archivio internazionale di Pesi e Misure di Sevres presso Parigi. pag. 3 Il tempo e la sua unità di misura La nozione di tempo ha origine dalla nostra esperienza basata sulla percezione del susseguirsi degli eventi da noi osservati. Ora, anche se questa percezione ci consentisse di distribuire gli eventi stessi secondo un ordine crescente di << prima-dopo >> ovviamente, una tale scala temporale sarebbe puramente qualitativa, oltre che soggettiva (tempo fisiologico). Si rende quindi necessario eliminare dal concetto di tempo ogni elemento fisiologico e concretizzarlo in quello di grandezza fisica (tempo fisico). In fisica, pertanto, il tempo si considera ente primitivo e si definisce operativamente, come grandezza fondamentale, la durata o intervallo di tempo, cioè la differenza tra due tempi detti, rispettivamente, istante finale e istante iniziale. Ovviamente, nella scala dei tempi qualsiasi istante si può scegliere come riferimento e porlo, per convenzione, eguale a zero. Come unita di misura dell'intervallo di tempo é stato scelto il secondo solare medio (s) La massa e la sua unità di misura Una caratteristica dei corpi e la loro massa che solitamente viene definita come la quantità di materia contenuta nei corpi stessi. Per effettuare le operazioni che conducono alla misura della massa eguali o diversi intervalli di tempo. di un corpo si può usare la bilancia. Con tale strumento si pub stabilire: 1) se due masse sono eguali o diverse. 2) qual é la somma di due o più masse. UNITA DI MISURA DELLA MASSA Come unità di misura della massa é stato scelto il chilogrammo (kg) cosi definito: il chilogrammo é la massa di un blocchetto cilindrico di platino-iridio conservato nell’Archivio Internazionale di Pesi e Misure di Sévres presso Parigi. Grandezze scalari e grandezze vettoriali Il numero che rappresenta la misura della grandezza seguito dall’unità di misura è detto: Modulo o Intensità della grandezza. Tali grandezze sono dette Scalari. Per tutte le grandezze per la cui definizione non occorrono altri elementi per la loro definizione all’infuori del modulo o l’intensità sono dette Grandezze Scalari. Se per esempio consideriamo un punto materiale (rappresentazione grafica di un punto che non ha dimensione) può compiere degli spostamenti. Per descrivere tale grandezza fisica c’è bisogno di introdurre altri elementi. Per determinare lo spostamento di un punto materiale nello spazio c’è bisogno di introdurre altre grandezze oltre al modulo o intensità, questo perché nello spazio il punto materiale può compiere infiniti spostamenti in qualsiasi direzione ed in qualsiasi verso sempre con lo stesso modulo. Quindi per definire lo spostamento di un punto materiale si introdurranno altre due elementi: la direzione ed il verso. Tutte le grandezze per le quali oltre al modulo o intensità per la loro definizione c’è bisogno anche di direzione e verso, sono dette Grandezze Vettoriali DEFINIZIONE DI VETTORE Il vettore è un segmento orientato nello spazio individuato mediante i seguenti elementi caratteristici: direzione, verso, e intensità o modulo. pag. 4 In conclusione possiamo dire che lo spostamento è una grandezza vettoriale. Cenni di calcolo vettoriale a) SOMMA DI VETTORI Dati due vettori V1=OV1 e V2=OV2 applicati ad uno stesso punto O e formanti un certo angolo, si definisce Vettore Somma o Risultante il vettore V=OV individuato dalla diagonale del parallelogramma che ha per lati i vettori assegnati (regola del parallelogramma). Se i vettori sono più di due il vettore somma è dato dal lato di chiusura del poligono avente come lati i vettori assegnati (regola del poligono). b) DIFFERENZA DI DUE VETTORI Si definisce vettore opposto al vettore dato il vettore che ha la stessa intensità, la stessa direzione, ma verso contrario. Dati due vettori V1=OV1 e V2=OV2 applicati allo stesso punto O e formanti un certo angolo, si definisce differenza dei due vettori il vettore V=OV ottenuto dalla somma vettoriale di V1 e dell’opposto di V2. pag. 5 c) PRODOTTO DI UNA GRANDEZZA SCALARE PER UN VETTORE Dato un vettore V=OV ed un numero reale n (scalare) si definisce prodotto di una grandezza scalare per un vettore il U=nxV avente la stessa direzione del vettore V, lo stesso verso, e intensità = nxV. d) SCOMPOSIZIONE DI UN VETTORE IN DUE DI DIREZIONE ASSEGNATE Dato un vettore V=OV e due direzioni Or1 ed Or2, dall’estremo V conduciamo le parallele alle due direzioni, e i punti V1 e V2, individuati su r1 e r2 determinano i vettori V1=OV1, e V2=OV2 (procedimento inverso alla somma). Metodi di misurazione delle grandezze Fisiche Come si é visto, la determinazione quantitativa di una grandezza fisica si effettua attraverso la misurazione, operazione il cui risultato é la misura che esprime il rapporto tra la grandezza da misurare ed un'altra grandezza ad essa omogenea, presa come unità di misura. La misurazione di una grandezza fisica può essere effettuata seguendo tre metodi diversi. a) Metodo di misurazione diretta: è’ detto anche metodo di misurazione relativa e consiste nel confrontare la grandezza che si vuole misurare con un'altra della stessa specie scelta come campione o unità di misura. Questo metodo si applica per la misurazione delle grandezze fondamentali. b) Metodo di misurazione indiretta: è detto anche metodo di misurazione assoluta e consiste nel determinare il valore della grandezza in esame misurando direttamente le altre grandezze da cui essa dipende secondo una relazione ben definita. pag. 6 Così, per esempio, per misurare il volume di un corpo a forma cilindrica si misurano diretta mente l'altezza h ed il raggio r del cilindro e mediante la formula V = π r2 h se ne ricava il volume. c) Metodo di misurazione con strumenti tarati: questo metodo consiste nell’impiego di strumenti tarati, cioè di particolari dispositivi muniti di scale e di indici le cui indicazioni sono state controllate in base alla misurazione diretta o indiretta delle grandezze in esame; tale operazione viene detta taratura dello strumento. Calcolo degli errori Per determinare la misura delle grandezze fisiche il metodo più: diffuso é quello con strumenti tarati in quanto la misura stessa si riconduce alla osservazione della posizione di indici su scale, operazione che si può eseguire con elevata precisione. Se si ripetono varie volte le misurazioni di una grandezza fisica, si otterranno dei valori x1, x2,,,xn che, in generale, differiscono tra loro. Seguendo il principio della media di Gauss (o aritmetica), si assumerà come valore più probabile della grandezza in esame il valore dato dalla media aritmetica X=x1+x2+,,,+xn/n E bene osservare che non esistono misure esatte in quanto in ogni misurazione si commettono degli errori che possono essere accidentali o sistematici. Gli errori accidentali dipendono da circostanze perturbatrici fortuite; essi influiscono nelle misure, ottenute eseguendo una serie di misurazioni di una grandezza fisica, ora in un senso, ora nell’altro e con intensità variabile. Dato che gli errori accidentali sono legati ad altri fenomeni non controllabili che si sovrappongono al fenomeno in esame influenzandolo in modo del tutto casuale, essi non si possono mai eliminare (esempio differenza di temperatura a causa della quale gli strumenti si dilatano o si restringono ecc.). Gli errori sistematici sono quelli che dipendono da difetti costruttivi degli strumenti, vizi nel metodo usato, particolare comportamento dell'osservatore, ecc.. Essi influiscono sul risultato sempre nello stesso senso e con la stessa intensità e si possono eliminare o ridurre variando i metodi, gli strumenti e gli osservatori. Il calcolo degli errori presuppone la conoscenza del valore vero della grandezza da misurare; poiché ciò é impossibile, si ricorre ai calcolo del valore più probabile delle varie misure. Se non e richiesta una elevata precisione e se le misure sono poco numerose, é sufficiente calcolare l'errore assoluto massimo dato dalla semidifferenza tra il valore massimo XM ed il valore minimo Xm delle misure ottenute: a=XM-Xm/2 Tenendo conto dell'errore assoluto, la misura della grandezza in esame si esprime con la notazione: X=X+/- a pag. 7 Più significativo dell'errore assoluto, per stimare la precisione di una misura, é l'errore relativo definito dal rapporto tra l'errore assoluto e il valore medio della grandezza; cioè: r= a/X Se poi si vuole l’errore relativo percentuale, basta moltiplicare per cento quello relativo. Supponiamo, ad esempio, di aver misurato la massa di un anello d'oro con una bilancia d'analisi, avente la sensibilità di un milligrammo, e di aver eseguito 6 misurazioni i cui risultati sono: m1 = 7,580 g m2 = 7,583 g m3 = 7,530 9 m4 = 7,581 g m5 = 7,584 g m6 = 7,530 9 La media aritmetica dei sei valori da il valore della massa del corpo: m = m1 +m2+m3+m4+m5+m6 / 6 =7,581 g l’errore assoluto massimo è: a = 7,584-7,582 / 2 = 0,002 g La massa dell’anello sarà: m = (7,581 +/- 0,002) g L’errore percentuale sarà: 0,0026% pag. 8 Introduzione alla meccanica La meccanica La meccanica é Ia più antica delle scienze fisiche: essa infatti si occupa del movimento e questo è uno dei fenomeni naturali che per primo ha destato l'interesse dell'uomo. Di solito la meccanica si suddivide in tre parti: 1. la cinematica che studia il movimento dei corpi senza tener conto delle cause che Io producono; 2. Ia dinamica che studia il movimento dei corpi e Ie sue cause; 3. la statica che studia le condizioni di equilibrio dei corpi. Nell'idea di movimento sono intimamente legati i concetti primitivi di posizione e di tempo. Un corpo é in movimento se la sua posizione, misurata dalla distanza da un altro corpo, considerato fisso, varia al variare del tempo. Cosi, per esempio, stando nel vagone di un treno, diciamo di essere in movimento quando la nostra posizione, rispetto a quella della strada ferrata, cambia istante per istante. Ma noi possiamo anche muoverci all'interno del vagone che é in movimento rispetto alla strada ferrata, la quale, a sua volta, essendo fissata alla Terra, é in movimento rispetto al Sole e cosi via. E facile capire che se riferissimo il nostro movimento al Sole, anziché alle pareti del vagone, il movimento stesso risulterebbe molto complicato. D'altra parte non potendo stabilire l'esistenza di un qualcosa che occupi nell'universo sempre la stessa posizione, non ha significato parlare di moto assoluto e, pertanto, il moto di un corpo é sempre relativo, cioè riferito ad un altro corpo arbitrariamente scelto, che si considera fisso e che viene detto sistema di riferimento. Sistemi di riferimento Come é stato precisato nel paragrafo precedente un corpo si muove relativamente ad un sistema di riferimento quando la sua posizione varia nel tempo. Ora, per determinare il movimento di un corpo, bisognerebbe conoscere il movimento di ciascuna particella di cui esso é costituito e ciò ovviamente, è impossibile. Pertanto, in una prima trattazione del movimento di un corpo, prescinderemo dalle sue dimensioni, dalla sua forma, dalla sua costituzione chimica, eccetera, e Io considereremo come un punto, che chiameremo punto materiale o particella. Si tenga però sempre presente che il punto materiale, per definizione privo di estensione, é una astrazione accettabile in quei casi in cui si rende necessaria una notevole semplificazione dei problemi che si debbono risolvere. Per quanto riguarda il sistema di riferimento, sceglieremo una terna di assi cartesiani ortogonali XYZ aventi l'origine in un punto O e fissa nello spazio. Ai fini pratici tale terna di assi si considera solidale con Ia Terra e viene detta sistema di riferimento terrestre o da laboratorio. Riferendoci alla figura diciamo che un punto materiale P é in quiete o in moto quando le sue coordinate, cioè Ie distanze x, y e z, rispettivamente, dai piani YZ, X2 e XY, si mantengono costanti o variano nel tempo. pag. 9 Se il punto P é in movimento, per conoscere istante per istante la sua posizione, debbono essere note le coordinate x, y e z dei punto stesso in funzione del tempo t. Il luogo delle posizioni occupate dal punto P durante il suo movimento é una linea a cui si da il nome di traiettoria; questa può essere una retta o una curva. Nel primo caso il moto si dice rettilineo, nel secondo caso curvilineo. Quando il moto del punto materiale avviene in un piano, il sistema di riferimento si riduce a due assi cartesiani ortogonali XY di origine O, appartenente al piano su cui si muove il punto stesso. Se infine il moto del punto avviene lungo una retta, il sistema di riferimento si riduce ad un solo asse X di origine O. pag. 10 A chiarimento di quanto detto facciamo un esempio. Supponiamo che un punto materiale si muova su un piano e che, relativamente al sistema di assi cartesiani ortogonali XY di origine O, siano note le coordinate del punto in funzione del tempo: x=15t, y=—5t2 Moto di un punto materiale definito dalle relazioni: x = 15 t, y = — 5t2. In questo caso il movimento del punto é perfettamente individuato in quanto si può conoscere la sua posizione in qualsiasi istante. Le prime grandezze che caratterizzano il movimento: velocità e accelerazione a) Velocità. Riferito al movimento dei corpi, il concetto di velocità esprime intuitivamente la rapidità con cui varia la loro posizione; in esso, quindi, sono contenuti i concetti primitivi di lunghezza e di tempo. Cosi, per esempio, diciamo che un'auto é tanto più veloce quanto minore e il tempo che impiega a compiere un dato percorso. Il cammino che effettivamente percorre un punto materiale in movimento si suole chiamare, anche se impropriamente, spazio percorso. Non si confonda pero Io spazio percorso da un punto materiale, che é una grandezza scalare, col suo spostamento, che é una grandezza vettoriale, il cui modulo e dato dalla distanza tra una data posizione P0 occupata dal punto materiale ed un'altra posizione P, indipendentemente dal modo come il punto passa da Po a P, e avente la direzione della retta P0-P e verso da P0 a P. Volendo precisare il concetto di velocità da un punto di vista quantitativo, si può procedere nel modo seguente. Sia L la traiettoria che descrive il punto materiale in movimento; fissato su L un punto O come riferimento, siano P0, e P le posizioni occupate dal punto mobile negli istanti t0 e t; poniamo OP = s0 ed OP=s pag. 11 Il rapporto tra la lunghezza dell'arco PP0 = (s — s0) percorso e l'intervallo di tempo (t — t0) impiegato a percorrerlo, definisce la velocità scalare media. VELOCITA SCALARE MEDIA La velocità scalare media di un punto materiale in movimento é il rapporto tra lo spazio da esso percorso ed il tempo impiegato a percorrerlo. Considerando intervalli di tempo (t — t0) via via più piccoli, le posizioni P0 e P, occupate dal punto materiale in movimento, sono sempre più: vicine; si troveranno cosi velocità medie scalari tendenti ad un valore limite che si chiama velocità scalare istantanea. Precisiamo che la velocità, cosi come é stata definita, é una grandezza fisica derivata da una lunghezza e da un intervallo di tempo; di conseguenza la sua unita di misura nel SI è il metro al secondo (m/s) Chiariamo il concetto di velocità scalare media considerando, per esempio, il moto di un ciclista lungo una pista. Scelta la posizione O come riferimento, fissiamo mediante un orologio l'istante t0 in cui il ciclista passa per la posizione A: sia, per esempio, t0 = 30 s. Segniamo quindi l'istante t in cui il ciclista stesso passa per la posizione B e sia, per esempio, t = 40 s. Misuriamo gli spazi so = OA ed s = OB e siano rispettivamente so = 125 m ed s = 245 m. La velocità scalare media del ciclista nel tratto AB é: pag. 12 Nella definizione di velocità scalare non vengono precisati la direzione ed il verso del movimento del punto materiale. Per arricchire il concetto di velocita é conveniente considerare la velocità stessa come grandezza vettoriale. Sia L la traiettoria descritta dal punto materiale in movimento; fissato su L un punto O come origine e scelto come verso positivo quello antiorario, siano P0 e P le posizioni occupate dal punto stesso negli istanti t0 e t. Se i vettori s0 = OP0 ed s = OP rappresentano, rispettivamente, gli spostamenti negli istanti considerati, il vettore definito dal rapporto tra lo spostamento P0P= (s — s0), e l'intervallo di tempo (t – t0) in cui tale spostamento é avvenuto, rappresenta la velocità vettoriale media. VELOCITA VETTORIALE MEDIA La velocità vettoriale media di un punto materiale in movimento é il rapporto tra lo spostamento da esso subito ed il tempo durante il quale é avvenuto lo spostamento stesso. Considerando intervalli di tempo (t — t0) via via più piccoli, le posizioni P0, e P, occupate dal punto materiale in movimento, sono sempre più vicine; si troveranno, pertanto, velocità vettoriali medie tendenti ad un valore limite V che si chiama velocità vettoriale istantanea. pag. 13 La velocità vettoriale istantanea nel punto P0 si può rappresentare con un vettore V di origine in P0, avente direzione tangente alla traiettoria in P0, verso coincidente con quello del movimento e intensità eguale a quella della velocità scalare istantanea. b) Accelerazione. Il concetto di velocità da solo non basta per caratterizzare il movimento di un punto materiale; occorre anche conoscere come essa varia istante per istante. Siano v0 e v rispettivamente le velocità di un punto materiale nell'istante t0 in cui occupa la posizione P0, e nell'istante t quando occupa la posizione P. Il rapporto tra la variazione di velocità (v – v0), subita dal punto materiale in movimento ed il corrispondente intervallo di tempo (t — t0) in cui tale variazione avviene, é l'altra grandezza vettoriale che insieme alla velocità caratterizza il movimento: essa viene detta accelerazione media. ACCELERAZIONE MEDIA L'accelerazione media é il rapporto tra la variazione di velocità subita da un punto materiale in movimento ed il tempo durante il quale é avvenuta detta variazione. Considerando intervalli di tempo (t — to) sempre più piccoli si avranno accelerazioni medie sempre più vicine ad un valore limite che si chiama accelerazione istantanea. Precisiamo che l'accelerazione si può definire anche come la variazione di velocità subita da un punto materiale in movimento nell'unità di tempo. La sua unità di misura nel SI é il metro al secondo al quadrato (m/s2). Poiché la velocità di un punto materiale in movimento può variare sia di intensità che di direzione, si definiscono due tipi diversi di accelerazione. Sia a il vettore che rappresenta l'accelerazione istantanea di un punto materiale quando occupa la posizione P della traiettoria L su cui si muove. Scomponiamo tale vettore in due vettori uno at, in direzione della tangente in P alla traiettoria ed uno an in direzione della normale in P alla traiettoria pag. 14 stessa; i vettori at, ed an , vengono detti, rispettivamente, accelerazione tangenziale ed accelerazione centripeta o normale. L'accelerazione tangenziale esprime la variazione di intensità della velocità nell'unità di tempo mentre l'accelerazione centripeta esprime la variazione di direzione della velocità nell'unità di tempo. pag. 15 Leggi della dinamica e gravitazione universale Considerazioni preliminari Consideriamo una pallina di ferro appoggiata su un tavolo orizzontale e in quiete relativamente ad esso. L'esperienza mostra che affinché la pallina si metta in movimento rispetto al tavolo occorre una causa esterna, che potrebbe essere una piccola spinta, l'azione di una molia, l'attrazione di una calamita, o semplicemente la mancanza del vincoio, che é il tavolo. In quest'ultimo caso il movimento della pallina é dovuto all'attrazione che la Terra esercita su di essa. Supponiamo ora che la pallina si muova su una guida rettilinea. Anche questa volta l'esperienza mostra che per variare la sua velocita, o per fermarla, occorre una causa esterna che potrebbe essere l'azione esercitata da un ostacolo posto sul cammino della pallina o semplicemente l'attrito. In ogni caso, possiamo dire che la variazione di velocità della pallina non e mai un fatto spontaneo e richiede sempre una determinata causa. Osserviamo inoltre che, finché la pallina é appoggiata sul tavolo, essa resta ferma non perché viene a mancare l’attrazione da parte della Terra, ma in quanto c'é il tavolo a impedirne il movimento. In questo caso si puo constatare che la causa che metterebbe in movimento la pallina, se fosse libera, si manifesta, invece, attraverso Ie deformazioni che subiscono sia la pallina che il tavolo. Dalle osservazioni fatte, possiamo dire che: la forza é la causa della variazione di velocita o della deformazione che subisce un corpo al quale viene applicata la forza stessa. II concetto di forza e quelli di massa e acceierazione sono alla base della dinamica, cioe del moto e le sue cause. Questa indagine si fonda su tre leggi o principi che furono enunciati dal fisico inglese Isaac Newton (1642-1727) in forma assiomatica nella sua opera <<PhiIosophiae naturalis principia mathematica» pubblicata nell'anno 1687. Occorre sottolineare che nella formulazione delle leggi della dinamica di Newton i corpi vanno considerati come particelle o punti materiali e la loro massa é ritenuta costante durante il loro movimento (meccanica classica o di Galilei-Newton). Il principio d’inerzia La prima legge della dinamica di Newton è nota storicamente come legge o principio d’inerzia. Essa fu intuita da Galileo Galilei come conseguenza dei suoi studi sul moto dei gravi lungo un piano inclinato quando, in particolare, l'angolo di inclinazione del piano stesso é nullo (piano orizzontaie). Lanciando un grave su una superficie orizzontale, il grave stesso procede con velocita gradualmente decrescente; Galilei comprese che tale variazione di velocita era dovuta aIl'attrito e alla resistenza dell'aria. Riducendo via via tali resistenze, il moto tende sempre ad un moto rettilineo uniforme; nel caso ideaie che queste resistenze venissero completamente eliminate, il corpo dovrebbe procedere sempre con velocita costante in intensità, direzione e verso. Nei caso di un corpo inizialmente fermo su un piano orizzontaie é evidente che in assenza di forze esso perseveri nel suo stato di quiete. Questo fatto era gia noto sin dai tempi di Aristotele per il quale non era altrettanto evidente come un corpo si potesse mantenere in movimento senza l'intervento di una forza esterna. Bastava pero una analisi piu approfondita per riconoscere che tutti i movimenti si estinguono, se non sono sostenuti da forze attive, a causa delle forze passive (attrito e resistenza pag. 16 dell'aria). Cio fu compreso, come si è detto, prima da Galilei e successivamente da Newton, al quale si deve la formulazione definitiva del principio d'inerzia che si puo ritenere ancora valida. PRINCIPIO D'lNERZlA (prima legge della dinamica o di Newton) Un corpo rimane nel suo stato di quiete o di moto rettilineo uniforme sino a quando non agiscono su di esso forze esterne. Concludiamo facendo presente che il principio di inerzia non puo essere verificato sperimentalmente in quanto non si riesce ad isolare in maniera completa alcun corpo o sistema di corpi in movimento. La legge fondamentale della dinamica Come abbiamo detto nel precedente paragrafo, se ad un corpo, inizialmente fermo o in moto rettilineo uniforme rispetto ad un sistema di riferimento, non viene applicata alcuna forza, esso continua a mantenere il proprio stato di quiete o di moto rettilineo uniforme. Se pero il corpo é soggetto ad una forza, si osserva che la sua velocita cambia istante per istante; cio vuol dire che, per effetto della forza, il corpo subisce una accelerazione. Come si comportano corpi aventi massa differente quando vengono soggetti separatamente all'azione di una stessa forza? Per rispondere a tale domanda ci serviremo del dispositivo sperimentale in figura costituito da un carrello A che puo essere messo in movimento su una guida rettilinea ed orizzontale. Dopo aver determinato la massa m del carrello, poniamo il carrello stesso nella posizione M ed applichiamo ad esso una forza tramite il pesetto P, legato al filo f che passa per la gola della carrucola C. Poiché il carrello é libero di spostarsi lungo la guida, esso, sotto l'azione di tale forza, si mettera in movimento. Misuriamo l'intervallo di tempo occorrente per portare il carrello dalla posizione di quiete M in un'altra posizione N e calcoliamo la velocita del carrello stesso nell'istante in cui passa per N. In questo modo si puo determinare l'accelerazione del carrello mediante il rapporto tra la variazione della velocita da esso subita nel passare da M ad N ed il corrispondente intervallo di tempo; sia a il pag. 17 modulo di questa accelerazione. Mettiamo ora sul carrello dei blocchetti B in modo da farne variare la massa e ripetiamo piu volte l'esperienza lasciando invariato il pesetto P e, quindi, la forza applicata al carrello. Se m1, m2, m3, sono, per ciascuna esperienza, Ie masse complessive (carrello più blocchetti)e se a1, a2, a3, sono i corrispondenti valori dell'accelerazione, si verifica, entro i Iimiti degli errori sperimentali, che i prodotti m1xa1, m2xa2, m3xa3, risultano tutti eguali tra loro ed al prodotto mxa trovato inizialmente; si ha quindi: m1xa1 = m2xa2 = m3xa3 = ma. Sulla base dei fatti sperimentali esaminati, possiamo stabilire che, sottoponendo corpi diversi alla stessa forza, il prodotto della massa m di ciascun corpo per l'accelerazione a da esso subita si mantiene costante. Tale prodotto, che indicheremo con F, si puo prendere come valore della forza stessa, cioé: F=mxa (3-1) L'esperienza mostra inoltre che la forza e l'accelerazione hanno Ia stessa direzione e Io stesso verso. Tenendo presente che la massa di un corpo è una grandezza scalare mentre la forza e l'accelerazi0ne sono grandezze vettoriali, la (3-1) si scrivera: F=mxa (3-2) La (3-2) e l'equazione fondamentale della dinamica; essa esprime la Iegge fondamentale della dinamica o seconda Iegge di Newton. pag. 18 LEGGE FONDAMENTALE DELLA DINAMICA (seconda legge della dinamica o di Newton) La forza applicata ad un corpo libero di muoversi nella direzione della forza é uguale al prodotto della massa del corpo per I'accelerazione che esso subisce. Prima di chiudere questo paragrafo facciamo an cora due osservazioni: 1) se ad uno stesso corpo si applicano successivamente forze diverse, si verifica che le accelerazioni da esso subite sono direttamente proporzionali alle intensita delle forze stesse: cio vuol dire che Ia massa di un corpo si mantiene costante ed é una sua caratteristica; 2) se a corpi aventi massa diversa si applicano forze eguali, le accelerazioni da essi subite sono inversamente proporzionali alle loro masse: cio vuol dire che la massa dei corpi è un ostacolo al loro movimento o, in termini più appropriati, che la massa dei corpi é la misura della loro inerzia. Per questa sua caratteristica la massa viene detta massa inerziale mentre quella misurata con una bilancia e detta massa pesante o gravitazionale. Nel Sistema internazionale la forza e una grandezza derivata: infatti, come abbiamo visto, essa viene definita, in base alla relazione (3-1), come prodotto della massa per l'accelerazione. La sua unita di misura é il newton (N) del quale si puo dare la seguente definizione: il newton é l'intensita di quella forza che agendo su un corpo avente la massa di 1 kg gli imprime l'accelerazione di 1 m/s2. La legge di gravitazione universale Prendendo in esame le ieggi sul moto dei pianeti che Keplero, in seguito alle osservazioni fatte dall'astronomo Tycho Brahe, aveva formulato empiricamente, Newton pervenne nel 1687 alla legge di gravitazione universale. LEGGE DI GRAVITAZIONE UNIVERSALE Tra due corpi aventi rispettivamente massa m1 ed m2, i cui centri si trovano alla distanza r. si esercita una forza di mutua attrazione agente in direzione della retta congiungente i centri stessi e Ia cui intensità é direttamente proporzionale al prodotto delle masse ed inversamente proporzionale al quadrato della Ioro distanza. nella quale G é una costante che viene detta costante di gravitazione universale. ll valore di tale costante fu determinato per via sperimentale Ia prima volta da Lord Cavendish nel 1798; riferendoci al SI e alle misure più recenti, si ha: G = 6,673x10-11 Nm2/kg2 pag. 19 Leggi di Keplero: 1) Tutti i pianeti si muovono su orbite eilittiche di cui il Sole occupa uno dei fuochi. 2) Le aree descritte dai raggi vettori congiungenti ciascun pianeta con il Sole sono direttamente proporzionali ai tempi impiegati a descriverle. 3) I quadrati dei periodi di rivoluzione di ciascun pianeta sono direttamente proporzionali ai cubi degli assi maggiori delle Ioro orbite. La legge di gravitazione universale é stata, e continua ad essere, alla base del progresso della meccanica astronomica e terrestre. Cosi il pianeta Nettuno fu scoperto nel 1846 in quanto la sua esistenza era stata prevista da Leverrier per spiegare, in base alla legge di gravitazione universale, Ie perturbazioni dell'orbita del pianeta Saturno; analogamente é awenuto per Ia scoperta del pianeta Plutone fatta nel 1930. Sebbene ancora oggi non si conosca l'ente fisico da cui traggono origine e si trasmettono le forze gravitazionali, la legge di Newton occupa un posto preminente nel campo della meccanica. Essa e ancora alla base del calcolo delle orbite dei satelliti artificiali e della programmazione dei viaggi che le astronavi gia compiono nell'esplorazione del sistema solare. Il peso dei corpi. Differenza tra massa e peso. La massa della Terra Lasciando cadere un corpo di massa m entro un Iungo tubo in cui é stato fatto il vuoto e disposto verticalmente, si puo provare che l'accelerazione del corpo si mantiene costante. In base alla legge fondamentale della dinamica detta accelerazione non puo essere provocata che da una forza, diretta verso ii basso secondo Ia verticale. Tale forza, come gia abbiamo avuto occasione di dire, é il peso del corpo e l'accelerazione é quella di gravità. Pertanto, se P é il peso dei corpo e g l'accelerazione di gravita, in base alla (3-1) si ha: P = mg (3-16) Ma il peso dei corpo non e altro che la forza di attrazione che la Terra esercita sul corpo stesso; indicando allora con M Ia massa della Terra e con r la distanza tra il suo centro e quello dei corpo, per Ia legge di gravitazione universale, dev'essere: P=GxMm/r2 (3-17) Da questa relazione si vede che il peso di un corpo e inversamente proporzionale al quadrato della sua distanza dal centro della Terra. Per il fatto poi che la Terra non é perfettamente sferica e ruota intorno al proprio asse, il peso di un corpo varia oltre che con l'a|titudine anche con Ia latitudine. In conclusione possiamo dire che: mentre la massa di un corpo si mantiene costante, il suo peso invece varia da luogo a luogo e di conseguenza non é una grandezza caratteristica del corpo. Dal confronto delle relazioni (3-16) e (3-17) si ha: Mg=GxMm/r2 Da cui g=GxM/r2 Pertanto i'accelerazione di gravità e indipendente dalla massa dei corpo ed e inversamente proporzionale al quadrato della sua distanza dal centro della Terra. pag. 20 Dalla relazione nota l'accelerazione di gravità g dei iuogo e Ia distanza r si puo determinare la massa M della Terra. Riferendoci, per esempio, al livello dei mare e prendendo come valori medi di g e r, rispettivamente, 9,8 m/s2 e 6371x103 m, risulta: 9 8. (6371x103)2/(6.67x10-11) = 5.96x1024 kg pagina - 1 ___________________________________________________________________________________ Forze Massa e Peso Il *peso* P di un oggetto è la forza gravitazionale che attira l'oggetto stesso. Sulla Terra il peso è equivalente alla forza con la quale la Terra attira a sè un oggetto; è equivalente alla *massa* M di un oggetto per l'accelerazione locale di gravità g. Massa: M * Accelerazione dovuta alla gravità *: g = 9.81 m sec2 Peso: P M.g Che massa ha un astronauta, che pesa 687.newton sulla Terra? P 687.newton Per trovare la massa di un oggetto dal suo peso, dovete semplicemente dividere per g: M P g M = 70 kg Qual è il peso dell’astronauta sulla Luna? pagina - 2 ___________________________________________________________________________________ Sulla superficie della luna, l'accelerazione dovuta alla gravità è: g luna 1.62. m sec2 Così, mentre la massa dell'astronauta sulla luna è la stessa, il suo peso è diverso: P M.g luna P = 113 newton pagina - 3 ___________________________________________________________________________________ Forze Forze di attrito La forza di attrito è una forza *tangenziale* che si oppone allo scorrimento di una superficie sopra un'altra superficie. La massima forza di opposizione, che ostacola un oggetto nello *scivolamento* su di una superficie, è chiamata forza di attrito statico f s. La forza contraria che deve essere vinta per trattenere l'oggetto che scivola è la forza di attrito dinamico f k. Le forze di attrito sono proporzionali alla forza normale N che agisce perpendicolarmente alle superfici di scivolamento; le costanti di proporzionalità sono chiamate rispettivamente *coefficiente di attrito statico* μ s e *coefficiente di attrito dinamico* μ k. Coefficiente di attrito statico: μs Coefficiente di attrito dinamico: μk Forza normale: N Massa: M Massima forza di attrito statico: pagina - 4 ___________________________________________________________________________________ f s μ s.N Forza di attrito dinamico: f k μ k.N Peso: W M.g State cercando di spingere un frigorifero di 70.kg su un pavimento di linoleum dove il coefficiente di attrito statico è 0.6 ed il coefficiente di attrito dinamico è 0.4. Quanto forte dovrete spingere (in una direzione orizzontale) per ottenere lo spostamento del frigorifero? Quanto dovrete spingere per mantenere il movimento? M 70.kg μ s 0.6 μ k 0.4 Il pavimento è una superficie piana e le sole forze che agiscono verticalmente sul frigorifero sono il suo peso e la forza normale del pavimento che sostiene il frigorifero. Queste due forze devono essere uguali e la forza normale è uguale al peso. Al punto in cui il frigorifero sta per scivolare, la forza orizzontale che esercitate deve equivalere esattamente alla forza dell'attrito statico opposta allo scivolamento, così: W M.g NW F μ s.N F = 412 newton Per mantenere il movimento del frigorifero, dovete esercitare una forza più grande della forza dell'attrito dinamico, che è: F μ k.N F = 275 newton pagina - 5 ___________________________________________________________________________________ Forze Cubo su di un piano inclinato senza attrito Un cubo posato su un piano inclinato privo di attrito incontra due forze. Una è la forza di gravità (il peso del cubo), che agisce sul cubo stesso in direzione verticale. La seconda è la forza normale del piano, che spinge sul cubo in una direzione perpendicolare alla superficie del piano inclinato. In assenza di attrito, il cubo semplicemente scorre lungo il piano, in base alla Seconda Legge di Newton. La tecnica per determinare l'accelerazione del cubo lungo il piano è molto comune e molto usata sia in fisica che in ingegneria. Massa dell'oggetto che scivola: M Accelerazione dell'oggetto che scivola lungo il piano: ax Angolo del piano inclinato: θ Un cubo di massa 50.kg è posizionato su una superficie priva di attrito, inclinata con un angolo di 40.deg in orizzontale. Qual è lo spostamento del cubo? M 50.kg θ 40.deg Il primo passo è disegnare un *diagramma di un corpo-libero* che mostra le forze che agiscono sul cubo. pagina - 6 ___________________________________________________________________________________ Conviene scegliere le coordinate degli assi nelle direzioni lungo il piano inclinato e perpendicolare al piano. Lungo la direzione y (perpendicolare al piano) la componente del peso del cubo è in discesa e la forza normale è verso l'alto. Affinché il cubo non scappi via né sprofondi attraverso il piano inclinato, la somma di queste forze deve essere uguale a zero: N M.g.cos θ 0 Nella direzione x (lungo il piano) la sola forza agente sul cubo è l'altra componente del suo peso. Questa forza fornisce al cubo una accelerazione a x lungo il piano: M.g.sin θ M.a x Risolvendo questa equazione per a x avremo: a x g.sin θ a x = 6.3 m sec2 pagina - 7 ___________________________________________________________________________________ Forze Cubo su un piano inclinato, con attrito Un cubo che scivola lungo un piano inclinato incontra tre forze. Una è la forza di gravità (peso) che agisce sul cubo in direzione verticale. La seconda è la forza normale del piano, che spinge sul cubo in una direzione che è perpendicolare alla superficie del piano inclinato. La terza forza è l'attrito, che si oppone al moto. L'accelerazione a x della massa che scivola lungo un piano (inclinato ad un angolo θ) è determinata dalla componente dell'accelerazione di gravità lungo il piano meno l'effetto dell'attrito. Massa dell'oggetto che scivola: M Accelerazione dell'oggetto che scivola lungo il piano: ax Angolo del piano inclinato: θ Coefficiente dell'attrito dinamico: μk Forza d'attrito: f Forza Normale: N Un cubo di massa 50.kg è posizionato su una superficie piana inclinata ad un angolo di 40.deg in orizzontale. Il coefficiente dell'attrito dinamico tra il cubo e la superficie è 0.6. Qual è lo spostamento del cubo? M 50.kg θ 40.deg pagina - 8 ___________________________________________________________________________________ μ k 0.6 Il primo passo è disegnare un *diagramma di un corpo-libero* che mostra le forze che agiscono sul cubo. Il cubo scivola lungo il piano a destra, così la forza di attrito che si oppone al moto deve agire verso l'alto lungo il piano a sinistra. Nella direzione y (perpendicolare al piano) la componente del peso del cubo è verso il basso e la forza normale è verso l'alto. Affinché il cubo non scappi via né sprofondi attraverso il piano inclinato, la somma di queste forze deve risultare zero: N M.g.cos θ 0 Nella direzione x (lungo il piano) bisogna includere la forza di attrito f lungo la componente del peso del cubo. La risultante di queste forze equivale alla massa del cubo moltiplicato per la sua accelerazione lungo il piano: M.g.sin θ f M.a x L'altra importante equazione che ci serve viene dalla sezione sulle forze di attrito, che relaziona la forza di attrito f al coefficiente di attrito μ k moltiplicato la forza normale N: pagina - 9 ___________________________________________________________________________________ f μ k.N f μ k. M.g.cos θ Sostituendo nell'equazione delle forze nella direzione x, avremo: M.g.sin θ μ k. M.g.cos θ M.a x da cui l'accelerazione a x lungo il piano può allora essere trovata: a x g.sin θ μ k.g.cos θ a x = 1.8 m sec2 pagina - 10 ___________________________________________________________________________________ Forze Momento Il Momento è una misura di come effettivamente una forza applicata può causare una rotazione attorno a un asse di un * corpo rigido *. Un momento che causa una rotazione antioraria è di segno positivo ed un momento che causa una rotazione in senso orario è di segno negativo. Il momento τ è il prodotto di una forza F, della distanza radiale r dall'asse di rotazione dell'oggetto al punto di applicazione della forza e del seno dell'* angolo * θ tra r e F. Forza: F Distanza radiale: r Angolo: θ Momento: τ r.F.sin θ Supponete di spingere una porta con una forza di 20.newton nella direzione mostrata dalla figura. Qual è la risultante del momento τ? F 20.newton r 60.cm θ 20.deg pagina - 11 ___________________________________________________________________________________ τ r.F.sin θ τ = 4.1 newton.m Nel precedente esempio, cosa accade se θ 90.deg ? E' più facile o più difficile aprire la porta? τ r.F.sin θ τ = 12 newton.m La porta è più facile da aprire. Nell'esempio 1 (con θ 20.deg), cosa accade se r 10.cm ? E' più facile o più difficile aprire la porta? τ r.F.sin θ τ = 0.68 newton.m La porta è più difficile da aprire. pagina - 12 ___________________________________________________________________________________ Quantità di moto La quantità di moto p di un oggetto è il prodotto della sua massa m per la sua velocità v. In assenza di forze esterne (come la gravità), la quantità di moto misura la quantità di fatica necessaria per cambiare la velocità di un corpo di una massa specificata. E' più difficile cambiare la velocità di un oggetto che ha una grande quantità di moto di quella di un oggetto con una quantità di moto più piccola. Massa: m Velocità: v Quantità di moto: p m.v Un proiettile di massa m è sparato da un'arma con una velocità di v proiettile: v proiettile 500. m sec m 6gm Quanto veloce deve camminare un uomo di media corporatura (massa M 68.kg) per avere la stessa quantità di moto del proiettile? La quantità di moto p del proiettile è p m.v proiettile p = 3 kg m sec 1 Per avere la stessa quantità di moto del proiettile l'uomo dovrà camminare ad una velocità di v uomo p M v uomo = 0.044 m sec 1 (una lenta camminata!) Notate che, siccome la massa dell'uomo è molto più grande di quella del proiettile, egli deve muoversi ad una bassissima velocità per avere la stessa quantità di moto del proiettile. pagina - 13 ___________________________________________________________________________________ Quantità di moto Conservazione della quantità di moto Se due o più oggetti sono isolati da tutte le forze esterne così che le sole forze che agiscono su di essi sono quelle che essi esercitano l'uno sull'altro, la somma vettoriale delle quantità di moto di questi oggetti è costante nel tempo. Così, in un sistema meccanico isolato, la quantità di moto totale è conservata. Questo concetto è spesso applicato alle collisioni dove la quantità di moto totale prima dell'impatto è uguale alla quantità di moto totale dopo l'impatto. Massa del corpo 1: M 1 Massa del corpo 2: M 2 Velocità del corpo 1 prima dell'impatto: U 1 Velocità del corpo 2 prima dell'impatto: U 2 Velocità del corpo 1 dopo l'impatto: V 1 Velocità del corpo 2 dopo l'impatto: V 2 Quantità di moto iniziale del corpo 1: P U1 M 1.U 1 Quantità di moto iniziale del corpo 2: P U2 M 2.U 2 Quantità di moto finale del corpo 1: P V1 M 1.V 1 Quantità di moto finale del corpo 2: P V2 M 2.V 2 Conservazione della quantità di moto: P V1 P V2 P U1 P U2 pagina - 14 ___________________________________________________________________________________ Due corpi stanno collidendo, come mostrato nella seguente figura: Quando si assegnano i valori mostrati nella figura alle attuali variabili, bisogna ricordare di prestare attenzione ai segni delle velocità. Definiamo la velocità positiva essere nella direzione di destra e la velocità negativa essere nella direzione di sinistra: M 1 10.kg U 1 20. m sec V 2 5. m sec M 2 5.kg U 2 12. m sec V 1 — da trovare Per risolvere rispetto a V1, dovremo usare la legge della conservazione della quantità di moto. La quantità di moto di questi due sistemi (corpi) prima dell'impatto dovrebbe essere uguale alla quantità di moto dopo l'impatto: M 1.U 1 M 2.U 2 M 1.V 1 M 2.V 2 Risolvendo rispetto a V1 avremo: V1U1. M2 M1 U2V2 Il segno positivo di questo risultato indica che il corpo 1 si sta muovendo verso destra. V 1 = 11.5 m sec pagina - 15 ___________________________________________________________________________________ Un proiettile di massa M proiettile è sparato da un cannone di massa M cannone con una velocità di V proiettile : M proiettile 10.kg M cannone 4.ton V proiettile 500. m sec La velocità del contraccolpo del cannone V cannone deve essere calcolata dalla conservazione della quantità di moto. Prima che il cannone sia attivato, le quantità di moto sia del cannone che del proiettile sono zero. Dopo che il cannone ha sparato, la quantità di moto totale (cannone + proiettile) è ancora zero per la conservazione della quantità di moto: V cannone.M cannone M proiettile.V proiettile 0 Risolvendo rispetto a V cannone avremo: V cannone M proiettile.V proiettile M cannone Il segno negativo di V cannone indica che il cannone ed il proiettile si muovono in direzioni opposte uno rispetto all'altro. V cannone= 1.38 m sec pagina - 16 ___________________________________________________________________________________ Lavoro, Energia e Potenza Il lavoro Per un oggetto che si muove in una dimensione, il lavoro W fatto sull'oggetto da una forza costante applicata F è uguale al prodotto della componente della forza nella direzione del moto dell'oggetto F x e lo spostamento Δx. Intensità della forza: F Ampiezza dello spostamento: Δx Angolo tra la forza e il vettore spostamento: θ Componente della forza nella direzione del moto dell'oggetto: F x F.cos θ Lavoro: W F x.Δx pagina - 17 ___________________________________________________________________________________ Per questo esempio, avrete bisogno di ricordare che i e j sono vettori unità rispettivamente nelle direzioni x ed y: dimensione nella direzione x è uno dimensione nella direzione y è zero i 1 0 dimensione nella direzione x è zero dimensione nella direzione y è uno j 0 1 Un oggetto, sotto l'influenza di una forza vettore F, si muove dal punto P 1 al punto P 2, come mostrato nella figura. Trovare il lavoro W compiuto sull'oggetto. F 10.i 20.j .newton P 1 1.2.i 3.j .m P 2 4.i 6.j .m Il lavoro W compiuto sull'oggetto può essere calcolato in due modi. Soluzione usando il calcolo vettoriale Il vettore spostamento è Δr P 2 P 1 Il lavoro compiuto dalla forza sull'oggetto è W F.Δr W = 88 newton. m pagina - 18 ___________________________________________________________________________________ Soluzione usando Angoli ed Ampiezze L'angolo della forza vettore è θ F atan F.j F.i L'angolo del vettore spostamento è θ s atan P 2 P 1 .j P 2 P 1 .i L'angolo tra la forza ed il vettore spostamento è θθFθs L'ampiezza dello spostamento è sP2P1 Il lavoro è, quindi, uguale a W F .s.cos θ W = 88 newton. m s = 4.104 m θ = 16.46 deg θ s = 46.975 deg θ F = 63.435 deg pagina - 19 ___________________________________________________________________________________ Lavoro, Energia e Potenza Energia cinetica L'energia cinetica K di un oggetto è l'energia posseduta dall'oggetto e dovuta al suo moto. La variazione di energia cinetica di un oggetto è uguale al lavoro totale compiuto su un oggetto. Velocità dell'oggetto: v Massa dell'oggetto: M Lavoro compiuto sull'oggetto: W net Energia cinetica dell'oggetto: K..1 2 M v2 Quantità di moto dell'oggetto: p M.v Energia cinetica dell'oggetto: K p2 2.M Variazione dell'energia cinetica dell'oggetto: ΔK Wnet Un ciclotrone accelera protoni a velocità molto alte come 2.107 metri al secondo. Come comparare la loro energia cinetica a quella di una piuma portata lentamente in volo attraverso l'aria? Per prima cosa, dobbiamo consultare la lista, nelle Tabelle di Riferimento specifiche, delle Costanti fisiche fondamentali per trovare la massa di un protone: M protone 1.6726231.10 27.kg pagina - 20 ___________________________________________________________________________________ v protone 2.107. m sec Usando questi parametri, troviamo l'energia cinetica K protone di ogni protone. K protone . . 1 2 M protone v protone 2 K protone = 3.3 10 Facciamo ora un calcolo analogo per la piuma che scende lentamente: M piuma 1.gm v piuma 10. cm sec K piuma . . 1 2 M piumav piuma 2 K piuma= 5 10 6 Da notare che l'energia cinetica perfino di una leggerissima piuma è ancora molto più grande di quella del protone, anche se il protone è accelerato ad una velocità estremamente alta. Questo è perché anche la più piccola piuma è composta di bilioni di bilioni di bilioni di protoni ed altre particelle elementari. pagina - 21 ___________________________________________________________________________________ Lavoro, Energia e Potenza Energia potenziale gravitazionale L'energia potenziale gravitazionale U è l'energia posseduta da un oggetto a causa della sua posizione verticale in un campo gravitazionale (come quello della Terra). Più in alto è portato l'oggetto, più alta è la sua energia potenziale. Questa energia è chiamata potenziale perché può essere convertita in energia cinetica semplicemente lasciando cadere l’oggetto. Altezza sopra il livello di riferimento: h Massa di un oggetto: M Accelerazione dovuta alla gravità: g Energia potenziale gravitazionale: U M.g.h Una persona solleva un bilanciere di massa M dal suolo ad una posizione al di sopra della sua testa ad altezza h. M 100.kg h 8.m L'incremento nell'energia potenziale gravitazionale U del bilanciere è: U M.g.h U = 7845 joule pagina - 22 ___________________________________________________________________________________ Lavoro, Energia e Potenza Energia potenziale di una molla L'energia potenziale U immagazzinata in una molla (Legge di Hooke) è proporzionale al quadrato della lunghezza x della quale la molla è deformata rispetto alla sua posizione di riposo. Variazione di allungamento (o compressione): x Costante di elasticità della molla: k Energia potenziale della molla: U..1 2 k x2 Ci sono un paio di cose da tenere in mente quando si considera il moto armonico semplice di una molla. Per prima cosa, l'energia potenziale della molla è convertita in energia cinetica, che è poi riconvertita in energia potenziale, riconvertita ancora in pagina - 23 ___________________________________________________________________________________ energia cinetica, e così via. Seconda cosa, un oggetto in moto armonico semplice raggiunge un punto di massima velocità in cui tutta la sua energia è cinetica, ed un punto di velocità zero in cui tutta la sua energia è potenziale. Illustriamo questi punti usando il seguente disegno: 1. Quando la molla raggiunge il suo punto di allungamento (a metà del suo scatto), tutta la sua energia potenziale è stata convertita in energia cinetica, ed ha raggiunto la massima velocità. 2. Quando la molla è tutta allungata a sinistra, essa ha la massima energia potenziale. 3. Quindi quando la biglia si muove verso destra, converte l'energia potenziale in energia cinetica. 4. Quando la biglia raggiunge il lato estremo del suo scatto, la molla è compressa. La forza esercitata a causa della compressione fornisce la biglia di energia potenziale. Tutta l'energia cinetica è stata convertita in energia potenziale, e la velocità della biglia è zero. Una cassetta di massa M è lasciata cadere da una altezza h su una molla la cui costante di elasticità è k. Qual è la massima distanza y per la quale la molla è compressa? M 50.kg h 3.m k 800. joule m2 Abbiamo affrontato questo problema usando i principi della pagina - 24 ___________________________________________________________________________________ conservazione dell'energia. L'incremento in energia potenziale della molla dopo che è compressa da una distanza y è: 1. . 2 k y2 La diminuzione in energia potenziale gravitazionale della cassa dopo che cade da una distanza h sulla molla è: M.g.h La diminuzione in energia potenziale gravitazionale della cassa quando essa di nuovo cade in altezza per una distanza y di cui si comprime la molla è: M.g.y Usando il principio della conservazione dell'energia, per equilibrare l'aumento in energia potenziale della molla con il decremento in energia potenziale gravitazionale della cassa, ricaviamo: M.g. h y 1. . 2 k y2 Possiamo risolvere l'equazione relativa alla conservazione dell'energia rispetto allo spostamento y: y soluzione 1. k . M g . M2 g2 . . . .2 g h M k 1. k . M g . M2 g2 . . . .2 g h M k y soluzione= 1.4 2.626 m La soluzione fisica pertinente per y è: y ysoluzione1 y = 1.4 m pagina - 25 ___________________________________________________________________________________ Lavoro, Energia e Potenza Potenza La Potenza P è il rapporto tra il lavoro fatto da una forza e l'intervallo di tempo impiegato per compierlo. L'unità di misura SI per la potenza è 1.watt = 1 joule sec . Lavoro fatto: ΔW Intervallo di tempo impiegato a compiere il lavoro W: Δt Potenza: P ΔW Δt I 500 fari allo stadio richiedono 500.000 Watt per funzionare. Quanto lavoro deve essere fatto per far funzionare queste luci per una partita della durata di quattro ore? P 5.105.watt t 4.hr W P.t W = 7.2 109 joule Un bel po' di lavoro. Quanto alto dovete portare un container di 5 tonnellate per fare la stessa quantità di lavoro? W m.g.h M 5.ton h W. Mg h = 162 km pagina - 26 ___________________________________________________________________________________ Una automobile di massa M sta salendo una collina che ha una pendenza di 30 gradi ad una velocità costante v. Qual è la potenza spesa dal motore dell'auto? M 1.ton v 55.mph θ 30.deg Il motore applica una forza per far muovere l'auto a velocità costante su per il pendio. La forza applicata F applicata è: F applicata M.g.sin θ F applicata= 4.4 103 newton Per un oggetto che si muove in una certa direzione a causa di una forza, il lavoro ΔW fatto sull'oggetto dalla forza costante applicata F è uguale al prodotto della componente della forza nella direzione del moto dell'oggetto F x e lo spostamento Δx. Siccome la forza applicata e la velocità sono parallele F x F applicata e ΔW F applicata.Δx possiamo scrivere la potenza P come . P ΔW Δt F applicata. Δx Δt F applicata.v dove v è la velocità media La potenza P può essere ora calcolata P F applicata.v P = 1.1 105 watt pagina - 27 - ___________________________________________________________________________________ Lavoro, Energia e Potenza Conservazione dell'energia L'energia non può essere né creata né distrutta, ma solo trasformata da una forma in un'altra. Questo principio ha conseguenze di vasta portata in molte aree della fisica. Un caso speciale di questo principio è la conservazione dell'energia meccanica, come l'equilibrio dell'energia potenziale gravitazionale U e l'energia cinetica K di un oggetto che cade, come descritto in questa sezione. Una più estesa spiegazione di questo equilibrio verrà presentata nella sezione "Esplorazioni" della Fisica . Si può anche esplorare una più generale implicazione della legge sulla conservazione dell'energia, l'equivalenza di massa ed energia, incapsulata nella famosa equazione di Einstein E m.c2 . Energia cinetica: K Energia potenziale: U Conservazione della energia meccanica: ΔK ΔU 0 K U costante Una automobile, inizialmente ferma, di massa M comincia a discendere una collina inclinata ad un angolo θ rispetto al piano orizzontale. La lunghezza della collina è L. Qual è la velocità v dell'auto in fondo alla collina? M 1000.kg θ 40.deg L 10.m Per trovare v, usiamo il principio della conservazione dell'energia meccanica. La variazione in energia potenziale gravitazionale ΔU dell'auto dipende pagina - 28 ___________________________________________________________________________________ dall'abbassamento della quota verticale h corrispondente alla distanza L lungo la collina: h L.sin θ h = 6.43 m ΔU U finale U iniziale 0 M.g.h ΔU M.g.h ΔU = 6.3 104 joule Il segno negativo di ΔU indica che l'energia potenziale gravitazionale dell'auto è diminuita. Dall'equazione della conservazione dell'energia meccanica, l'aumento in energia cinetica ΔK dell'auto deve essere uguale alla diminuzione nell'energia potenziale gravitazionale ΔU: ΔK ΔU ΔK = 6.3 104 joule Siccome l'energia cinetica è definita come ΔKE 1. . 2 M v2 Possiamo risolvere l’equazione precedente rispetto a v e trovare la velocità v: v 2.ΔK M v = 25.1 mph pagina - 29___________________________________________________________________________________ Solidi e Liquidi Densità La densità ρ di un oggetto è direttamente proporzionale alla sua massa M ed inversamente proporzionale al suo volume V. Maggiore è la massa dentro una data quantità di spazio, più elevata la densità. Massa: M Volume: V Densità: ρM V La densità dell'acqua è 1 grammo per centimetro cubo. Quanto pesa una tanica d'acqua di venti galloni? Un centimetro cubo ρ 1. gm cm3 pagina - 30 ___________________________________________________________________________________ V 20.gal 1 gal = 3.785 10 3 m3 20 gal = 0.076 m3 Usando la densità risulta: M V.ρ M = 75.7 kg pagina - 31 ___________________________________________________________________________________ Solidi e Liquidi Pressione idrostatica La pressione su un oggetto immerso in un liquido è direttamente proporzionale alla profondità di immersione h e alla densità del liquido ρ. La costante di proporzionalità è g, la accelerazione di gravità. Profondità del fluido: h Densità del fluido: ρ Accelerazione di gravità: g = 9.807 m sec2 Pressione idrostatica: p ρ.h.g In un lago, a che profondità dovete immergervi affinché la pressione che l'acqua esercita su di voi sia uguale a quella atmosferica? Sulla superficie, un tuffatore è soggetto ad una atmosfera di pressione: p 1.atm che, in unità SI, equivale a: p = 1.013 105 Pa Per calcolare la profondità che il tuffatore dovrebbe raggiungere perché la pressione esercitata su di lui dall'acqua uguagli p = 1 atm è necessario conoscere la densità dell'acqua: ρ 1000. kg m3 Rivedendo l'equazione per la pressione idrostatica, possiamo ora calcolare la profondità h: pagina - 32 ___________________________________________________________________________________ h p. ρg h = 10.332 m h = 1.033 104 mm Quanto deve essere alta una colonna di mercurio per esercitare una pressione equivalente all'atmosfera? Comparate la risposta a quella vista nell'esempio 1. La pressione e la densità, in questo caso, sono p 1.atm ρ 13600. kg m3 Usando l'equazione per la pressione idrostatica avremo: h p ρ.g h = 759.7 mm Notate che, siccome il mercurio è più denso dell'acqua, serve una minore quantità di esso per raggiungere la stessa pressione idrostatica (es. 1.atm, come in questi esempi). pagina - 33 ___________________________________________________________________________________ Solidi e Liquidi Spinta idrostatica e galleggiamento Un solido immerso in un fluido subisce una forza diretta verso l'alto, chiamata forza di spinta, che è proporzionale alla densità del fluido ρ f ed al volume dell’acqua spostata V s dal solido galleggiante. Densità del fluido: ρ f Densità del solido: ρ s Volume del solido: V s Principio di Archimede Peso del solido: P s ρ s.V s.g Forza di spinta: F S ρ f.V s.g Una sfera di acciaio di raggio R è sommersa in acqua. Qual è la grandezza della forza di spinta che agisce sulla sfera? Qual è il peso apparente della sfera? ρ acciaio 9. gm cm3 ρ acqua 1. gm cm3 r 10.cm Prima cosa è trovare il volume V della sfera: pagina - 34 ___________________________________________________________________________________ V..4 3 π r3 La forza di spinta che agisce sulla sfera è quindi F S ρ acqua.V.g Il peso apparente W della sfera è il “vero” peso della sfera meno la forza di spinta esercitata sulla sfera stessa dal fluido: W apparente ρ acciaio.V.g F S W apparente = 328.6 newton F S = 41.1 newton V = 4189 cm3 pag. - 1 ___________________________________________________________________________________ Energia termica Propagazione del calore per Conduzione La conduzione è la propagazione di energia (calore) termica, attraverso una sostanza, da una regione più calda ad una più fredda. Il calore si propaga attraverso una sostanza come risultato delle collisioni tra le molecole. Quando c'è una differenza di temperatura ΔT tra sostanze a contatto, le molecole di energia più elevata della sostanza più calda trasferiranno energia alla sostanza più fredda attraverso la collisione molecolare, creando un flusso di calore Φ . Conducibilità termica: k Temperatura calda: T calda Temperatura fredda: T fredda Area perpendicolare alla propagazione di calore: A Distanza tra la faccia calda e la faccia fredda: L Propagazione di calore: Φ quantità_di_calore_trasmesso tempo_trascorso ΔQ Δt Differenza di temperatura: ΔT T calda T fredda Propagazione di calore per conduzione: Φ k.A. ΔT L Un piatto di metallo di spessore d e di area rappresentativa A, è esposto ad una fiamma su un lato e ad acqua corrente sull'altro lato. La temperatura del lato vicino al pag. - 2 ___________________________________________________________________________________ fuoco è costante a T calda; il lato vicino all'acqua corrente è costante a T fredda. d 5.mm A 8000.cm2 T calda 573.K T fredda 293.K Se il calore si propaga, il flusso Φ attraverso il piatto è misurato come Φ 600. kcal sec La conducibilità termica k del metallo è k Φ. d A. T calda T fredda (Un metallo con questo valore approssimativo di k è l'acciaio.) k = 56.073 pag. - 3 ___________________________________________________________________________________ Energia termica Prima legge della Termodinamica Se una quantità di calore Q è assorbita da un sistema ed il sistema fa un lavoro L sull’ambiente esterno, allora la variazione in energia interna ΔU del sistema è uguale alla differenza Q L. Questa legge, conosciuta come prima legge della termodinamica, è un’altra formulazione della legge della conservazione dell'energia. Trasferimento di calore al sistema: Q Lavoro fatto dal sistema: L Variazione di energia interna del sistema: ΔU Q W Quando l'acqua bolle e si converte in vapore, sta assorbendo energia Q dalla stessa fonte (molto probabilmente la vostra cucina), ed il calore compie un lavoro W sull'acqua per convertirla in vapore. Possiamo calcolare questi valori e trovare la variazione di energia interna ΔU dell'acqua. Se supponiamo di essere sulla Terra e al livello del mare, la pressione è p 1.atm Per definizione, il calore Q, richiesto per convertire una quantità di acqua in vapore, è uguale alla massa dell'acqua moltiplicata per quello che è chiamato il calore di vaporizzazione L v dell'acqua: M 5.gm L v 539. cal gm Q M.L v Q = 11283 joule pag. - 4 ___________________________________________________________________________________ Perché la pressione rimanga costante, il lavoro fatto dal sistema deve essere uguale a P(V2 - V1), ovvero la pressione per la differenza tra il volume dell'acqua ed il volume del vapore: ρ w 1. gm cm3 ρ s 5.984.10 4. gm cm3 Vw M ρw Vs M ρs = V w 5 cm 3 Il lavoro fatto dal sistema è: W p. V s V w e la variazione in energia interna del sistema è quindi: ΔU Q W Δ U = 10437.3 joule W = 202.1 cal V s = 8356 cm3 pag. - 5 ___________________________________________________________________________________ Energia Termica Seconda legge della Termodinamica In molte trasformazioni fisiche si è notato che una stessa sorgente scambia con un corpo, che subisce il processo, una quantità di calore maggiore o minore a seconda che la trasformazione avvenga con o senza dispersione di energia in attriti, cioè in modo irreversibile o reversibile: il risultato è prevedibile, dal momento che nel caso in cui avvengano dispersioni energetiche la sorgente deve scambiare una maggiore quantità di calore per produrre lo stesso lavoro. Esiste una nuova grandezza che viene assunta come indice della perdita di capacità di un sistema di compiere lavoro quindi di produrre energia, come indice della probabilità di uno stato termodinamico. Essa è stata chiamata entropia (da un vocabolo greco che significa trasformazione) da Clausius. La seconda legge della termodinamica afferma che tutti i processi naturali vanno in una certa direzione ossia nella direzione secondo cui si incrementa l'entropia totale dell'universo. Un altro modo di definire la seconda legge della termodinamica è quello di dire che il calore passa spontaneamente da un corpo più caldo ad uno più freddo, ma non viceversa. Calore entrato nel sistema: Q Temperatura assoluta: T Variazione dell'entropia: ΔS Q T Cinquanta grammi di ghiaccio stanno fondendo in un liquido a 0°C (o 273 K). M 50.gm T 273.K L f 80. cal gm La quantità di energia può essere calcolata così: Q M.L f pag. - 6 ___________________________________________________________________________________ Con i dati sull'energia e sulla temperatura, l'entropia viene calcolata come: ΔS Q T L'entropia aumenta, così c'è molto disordine nel sistema. Una delle cose più interessanti sull'entropia è che ΔS universo>0 Cioè, l'entropia nell'universo va sempre più aumentando, ossia il numero di condizioni possibili sta aumentando, e il livello di ordine sta diminuendo. Δ S = 61.345 joule K Q = 4000 cal pag. - 7 ___________________________________________________________________________________ Solidi e Liquidi Tensione superficiale Mentre le molecole all'interno di un liquido vengono attratte in tutte le direzioni, le molecole sulla superficie hanno una azione di richiamo verso l'interno, che provoca la tensione superficiale. Consultate Le Tabelle di Riferimento specifiche per trovare la tensione superficiale di molti liquidi comuni. La tensione superficiale di un oggetto sferico (come una goccia d'acqua) può essere determinata dal suo diametro e dalla sua pressione relativa interna. Pressione relativa dentro una goccia sferica di liquido: p relativa Diametro della goccia d'acqua: d Tensione superficiale di una goccia sferica di liquido: σ 1. . 4 p relativad pag. - 8 ___________________________________________________________________________________ Qual è la tensione superficiale di una goccia d'acqua del diametro di 1.mm, se la pressione relativa è uguale a 200.Pa ? d 1.mm p relativa 200.Pa Usando la formula per la tensione superficiale di una goccia sferica, avremo: σ 1. . 4 p relativad Nota che più piccola è la gocciolina, più grande sarà la pressione. σ = 0.05 newton m pag. - 9 ___________________________________________________________________________________ Solidi e Liquidi Calore di vaporizzazione Il calore di vaporizzazione L v è la quantità di calore necessaria per trasformare una massa unitaria dallo stato liquido allo stato gassoso. Il passaggio vaporizzazione/condensazione si visualizza più facilmente usando il "diagramma cambiamento di fase". Massa di liquido evaporato: M Quantità di calore usato per la vaporizzazione: Q Calore di vaporizzazione: Lv Q M Quanta acqua sarete in grado di convertire in vapore acqueo usando un bollitore di 1.kW per cinque minuti? (Assumiamo che tutta la potenza del bollitore sia usata per generare calore.) Quanto alcool si dovrebbe vaporizzare in identiche condizioni? P 1kW Δt 5.min Per prima cosa calcoliamo quanto calore è generato dal bollitore nel tempo Δt : Q P.Δt Poi guardiamo il calore di vaporizzazione per l'acqua e per l'alcool: acqua: L acqua_v 2.26.106. joule kg Q = 3 105 joule pag. - 1 0 ___________________________________________________________________________________ alcool: L alc_v 8.79.105. joule kg Possiamo ora usare la definizione di calore di vaporizzazione per trovare la quantità (massa) d'acqua ed alcool vaporizzati dal bollitore: M acqua Q L acqua_v M alc Q L alc_v Da notare che, siccome il calore di vaporizzazione dell'acqua è più alto di quello dell'alcool, dalla stessa quantità di calore viene vaporizzata una maggiore quantità d'alcool che di acqua. M alc = 341.3 gm M acqua = 132.7 gm pag. - 1 1 ___________________________________________________________________________________ Solidi e Liquidi Calore di fusione Il calore di fusione è la quantità di calore necessaria per portare una massa unitaria di sostanza da solida a liquida. La temperatura alla quale questa trasformazione avviene è chiamata punto di fusione. Potete trovare una tabella dei punti di fusione di molti metalli nelle Tabelle di Riferimento specifiche. Il passaggio fusione/solidificazione è meglio visualizzato usando il "diagramma cambiamento di fase". Massa del solido fuso: M Quantità di calore usato per la fusione: Q Calore di fusione: Lf Q M Trovare l'energia necessaria per fondere un blocco di rame di 1.kg al suo punto di fusione. M 1.kg Dallo standard di riferimento, troviamo che il calore di fusione per il rame è: L f 2.05.105. joule kg La quantità di calore necessario per fondere il blocco è quindi: Q L f.M Q = 2.05 105 joule pag. - 1 2 ___________________________________________________________________________________ Solidi e Liquidi Dilatazione termica Tutti i solidi ed i liquidi cambiano la loro densità (massa per volume unitario) quando sono riscaldati o raffreddati. Possiamo caratterizzare il cambiamento del volume di una sostanza in relazione alla sua temperatura con il suo coefficiente di dilatazione del volume β. Quando vogliamo sapere come una dimensione lineare di un solido cambia con la temperatura, parliamo di coefficiente di dilatazione lineareα. Questi coefficienti, per parecchi metalli, sono elencati nelle Tabelle di Riferimento specifiche. Lunghezza iniziale del solido: L Volume iniziale del solido: V Variazione di temperatura: ΔT Coefficiente di dilatazione lineare: α Coefficiente della dilatazione di volume: β Variazione in lunghezza: ΔL α.L.ΔT Variazione di volume: ΔV β.V.ΔT Relazione tra volume e coefficiente di dilatazione lineare: β 3.α pag. - 1 3 ___________________________________________________________________________________ Un nastro d'acciaio misura la lunghezza L 1 di un tubo di alluminio alla temperatura T 1: L 1 50.cm T 1 273.K Alla temperatura T 1 le misure del nastro rappresentano la reale lunghezza del tubo. Quale lunghezza L 2 misura il nastro alla temperatura T 2 323.K ? Per prima cosa bisogna cercare i coefficienti di dilatazione lineare per l'acciaio e l'alluminio. Alluminio: Acciaio: α st 12.0.10 6. 1 K Variazione di temperatura: ΔT T 2 T 1 La lunghezza reale del tubo a temperatura T 2 è L al L 1. 1 α al.ΔT La lunghezza reale di 1.cm del nastro di acciaio alla temperatura T 2 è L st 1.cm. 1 α st.ΔT Così il numero di centimetri N rilevato sul nastro sarà N L al L st N = 50.029 L st = 1.0006 cm L al = 50.0595 cm Δ T = 50 K α al 23.8. 10 6. 1 K pag. - 1 4 ___________________________________________________________________________________ Solidi e Liquidi Struttura cristallina Comparati ai gas, i solidi ed i liquidi sono molto più densi perché le particelle, nei solidi e nei liquidi, sono ‘a contatto’ l'una con l'altra. Mentre i solidi mantengono la loro forma propria, i liquidi ed i gas prendono la forma del loro contenitore. I solidi possono essere approssimativamente divisi in due tipi: cristallini (con particelle che hanno un modello regolare; per esempio, il rame ed il sale da tavola) e amorfi (ad esempio il vetro e la gomma). Questa sezione tratta la struttura microscopica dei solidi cristallini. La disposizione delle particelle in un cristallo è chiamata a reticolo. Allo stesso modo, i blocchi fondamentali di costruzione che ripetono se stessi senza un reticolo sono chiamati celle elementari o unitarie. Tre tipi di reticoli saranno descritti qui: cubico semplice, cubico a facce centrate, e cubico a corpo centrato. Molte sostanze cristalline comuni hanno uno di questi reticoli. Dimensione cella elementare: a Distanza tra i gli ioni immediatamente a contatto in cristalli con differenti tipi di reticolo (leggete le note esplicative riguardanti i sottostanti diagrammi): Cristallo cubico semplice (CS): da pag. - 1 5 ___________________________________________________________________________________ Cristallo cubico a facce centrate (CFC): d a 2 Cristallo cubico a corpo centrato(CCC): d 3.a 2 L'oro metallico forma un cristallo cubico a facce centrate, nel quale la dimensione della cella unitaria è 4.07 Angstrom. Qual è la distanza tra i gli atomi che si trovano a immediato contatto in un cristallo d'oro, e quanti di questi hanno qualche atomo d'oro? Notate che le distanze atomiche sono spesso misurate in Angstrom, allora, per prima cosa, definiamo questa unità di lunghezza: Angstrom 10 10.m a oro 4.07.Angstrom Per trovare la distanza tra i gli atomi a immediato contatto in un cristallo d'oro, usiamo la formula per i reticoli CFC: d oro a oro 2 d oro = 2.878 Angs Quando un cristallo d'oro è cubico a facce centrate, ciascun atomo d'oro nel cristallo ne ha 12 a immediato contatto.