Università degli Studi di Perugia Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Anno Accademico 2012/2013 Tesi di Laurea Automi Cellulari e Meccanica Quantistica Laureando: Alessio Mangoni Relatore: Dr. Simone Pacetti Sommario La nascita della meccanica quantistica, con il principio di indeterminazione di Heisenberg e l'esistenza dell'entanglement quantistico, ha scosso radicalmente il punto di vista degli scienziati sulla natura. Einstein era riuscito a conferire una realtà propria alle componenti della natura, sia elaborando la Relatività Speciale che quella Generale. In queste teorie infatti una grandezza sica è descritta da un ente matematico che la rende intrinsecamente invariante, come ad esempio un tensore, concependo le dierenti osservazioni delle proprietà del sistema come risultato del cambiamento delle componenti del tensore a causa di un cambiamento di base. Einstein era convinto che ogni teoria sica dovesse essere reale, locale e completa, per questo non credeva che la meccanica quantistica potesse essere una teoria nale. Bell dimostrò, con le sue celebri diseguaglianze, che non si può costruire una teoria a variabili nascoste locale che riproduca i risultati della meccanica quantistica. Tuttavia il procedimento con cui si arriva alle diseguaglianze sembra non escludere che un'evoluzione deterministica e locale, rappresentata da automa cellulare, possa portare, a grandi distanze, alle previsioni della teoria quantistica. Indice Introduzione 3 1 Gli Automi Cellulari 7 1.1 Generalità . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Denizione formale . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Proprietà e classi . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Esempi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Le diseguaglianze di Bell 12 2.1 La correlazione quantistica . . . . . . . . . . . . . . . . . . . . 12 2.2 Il paradosso EPR . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Il teorema di Bell . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Considerazioni . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Dagli Automi Cellulari alla Meccanica Quantistica 20 3.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Quantizzazione primitiva . . . . . . . . . . . . . . . . . . . . . 21 3.3 Gli operatori Beable e Changeable . . . . . . . . . . . . . . . . 25 3.4 Un modello di Automa Cellulare . . . . . . . . . . . . . . . . . 27 3.5 Esempi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.6 Perdita di informazioni . . . . . . . . . . . . . . . . . . . . . . 35 1 INDICE 2 Conclusioni 42 Ringraziamenti 44 Bibliograa 45 Introduzione Fino all'avvento degli esperimenti che misero in crisi la sica classica e che indussero la nascita della meccanica quantistica gli scienziati erano pervasi da un grande ottimismo dovuto alla convinzione di poter controllare i meccanismi della natura tramite teorie deterministiche. Le leggi siche sviluppate no a quel momento permettevano, tramite equazioni dierenziali più o meno complesse e condizioni al contorno, di conoscere qualsiasi grandezza sica di un dato sistema. Se le equazioni non ammettevano soluzione esatta si poteva applicare uno dei numerosi metodi di risoluzione numerica, permettendo di avere la soluzione con la precisione voluta, almeo in linea di principio. Nei primi anni del Novecento Einstein era riuscito ad elaborare una teoria molto potente che sistemava le apparenti incoerenze nella descrizione di fenomeni elettromagnetici, salvando le equazioni di Maxwell e ampliando il gruppo di trasformazioni di Newton: la teoria della relatività speciale. Contemporaneamente, con le conoscenze dell'epoca, non si riuscivano a spiegare vari risultati di esperimenti come ad esempio la dirazione di elettroni, l'eetto Compton, l'esperimento di Stern e Gerlach, la radiazione di corpo nero legata alla cosiddetta catastrofe ultravioletta e il problema del calore specico a basse temperature. Nasceva, pian piano, la meccanica quantistica. Il pri- mo passo fu il modello proposto dal sico danese Niels Bohr per spiegare lo spettro di emissione discreto dell'atomo di idrogeno legato empiricamente 3 4 alla formula di Balmer o, più in generale, a quella di Rydberg, in questo caso il modulo del momento angolare dell'elettrone era supposto essere multiplo intero della costante di Planck ridotta, ~, ovvero quantizzato. Una tappa fondamentale fu l'ipotesi di Louis De Broglie sulla lunghezza d'onda associabile ad un elettrone, che portò alla formulazione, da parte di Schrödinger e Heisenberg, delle due teorie note come la meccanica ondulatoria e la meccanica delle matrici. La formalizzazione della teoria quantistica è stata fatta successivamente da Dirac, Von Neumann e Weyl. Schrodinger propose un'equazione dierenziale alle derivate parziale che governa qualsiasi sistema quantistico, dalla quale, con opportune condizioni al contorno, i numeri interi introdotti arbitrariamente da Bohr nella quantizzazione del momento angolare dell'elettrone nell'atomo di idrogeno sorgono spontaneamente. Nella meccanica classica le variabili canonicamente coniugate posizione e impulso possono essere usate per denire lo stato di una particella e il loro valore può essere conosciuto esattamente; in meccanica quantistica, invece, questo non è possibile a causa dei limiti imposti dal principio di indeterminazione di Heisenberg, principio che in realtà può essere dimostrato con l'algebra degli operatori associati alle osservabili siche. In questo modo il concetto di traiettoria di una particella quantistica perde di signicato e tutte le informazioni deducibili sono contenute nella funzione d'onda del sistema sico ψ(~x, t), il cui modulo quadro rappresenta la densità di probabilità di posi- zione al tempo t. Il fatto che una descrizione nale della natura permetta il solo calcolo delle probabilità di determinate grandezze siche fu contestato da molti sici tra cui Einstein che riassunse il suo disappunto nella celebre frase Dio non gioca a dadi con l'universo. Di contraria opinione era Niels Bohr e in generale l'interpretazione di Copenaghen della meccanica quantistica secondo cui le informazioni che provengono dalla funzione d'onda sono 5 irriducibili. Nel 1935 Einstein, Podolsky e Rosen pubblicarono un articolo [1] dal titolo Can Quantum Mechanical Description of Physical Reality Be Considered Complete?, noto col nome di paradosso EPR dal nome dei tre, in cui si mostrava come, assumendo località e realismo locale, la descrizione della realtà data dalla funzione d'onda non può essere completa. Successivamente John Bell [2] mostrò che supponendo di introdurre le variabili nascoste locali tramite un parametro o una loro distribuzione di probabilità, la probabilità di misura di osservabili su sistemi correlati (detti anche entangled) dovevano soddisfare certe diseguaglianze. La teoria quantistica portava a predizioni che le violavano e quindi Bell concluse che nessuna teoria a variabili nascoste locali poteva portare ai risultati della meccanica quantistica. Gli esperimenti eettuati nora sembrano dare supporto alle previsioni quantistiche su particelle correlate. La teoria quantistica si può tuttavia pensare come un utile e potente strumento matematico capace di predizioni sulla natura talvolta molto accurate, ma non come una teoria nale. Un'idea, portata avanti da 't Hooft, prevede che il determinismo e la località siano preservati alla scala di Planck sotto forma di un automa cellulare la cui evoluzione è, appunto, deterministica e classica. In questo modello la natura probabilistica della meccanica quantistica può essere ottenuta introducendo piccole perturbazioni che comportano perdita di informazione. Come proposto da 't Hooft [3, 6] si può procedere ad una quantizzazione primitiva degli automi cellulari, descrivendo il loro comportamento a distanza tramite operatori quantistici in uno spazio di Hilbert, con la località espressa mediante i commutatori. In questo modo si avrebbe un modello in partenza deterministico descritto da un formalismo molto simile alla meccanica quantistica. Si può così, successivamente, introdurre la perdita di informazione e denire stati correlati proprio come nella meccanica quantistica. Il dubbio se questo modello vìoli 6 o no le diseguaglianze di Bell è dovuto dal suo essere intrinsecamente locale e deterministico, ma ciò sarà discusso in seguito. Capitolo 1 Gli Automi Cellulari 1.1 Generalità Il modello di evoluzione deterministica da cui tutto segue potrebbe essere, alle dimensioni della scala di Planck, un automa cellulare [3]. Un automa cellulare è un modello discreto studiato in varie discipline come ad esempio sica, matematica, biologia e informatica, usato in particolare per simulazioni. Esso consiste, intuitivamente, in un reticolo regolare d-dimensionale di celle ciascuna avente uno stato ben denito. Al tempo iniziale t=0 lo stato di ogni cella è noto e al passo temporale successivo ogni stato evolve secondo una regola ben denita e, in generale, l'aggiornamento di ogni cella è istantaneo. Inizialmente gli automi cellulari furono studiati verso la metà degli anni '50 del Novecento da Von Neumann che immaginava un reticolo bidimensionale composto da innite celle quadrate con spazio e tempo discreti in cui ogni cella evolveva il proprio stato a seconda della situazione presente nelle celle vicine. 7 1.2 Denizione formale 8 1.2 Denizione formale Un automa cellulare può essere denito, in modo rigoroso, come una quadrupla A = (d, S, V, f ) 1. d ∈ N+ 2. S 3. V dove è la dimensione del reticolo; è l'insieme nito degli stati possibili per una cella; è un sottoinsieme nito di Zd detto indice di vicinato e compren- de tutte le celle del reticolo vicine ad una data cella che inuenzano l'evoluzione di quest'ultima; 4. f : S a → S è una funzione generica che denisce l'evoluzione di uno stato al tempo successivo, a partire dallo stato delle celle del suo vicinato dell'insieme V, a è la dimensione di V. Lo spazio discreto può essere visto come composto da celle quadrate, esagonali o di altre forme. Il vicinato di una cella, nel caso in cui la dimensione sia d = 2, può essere denito in vari modi, i due più noti sono il vicinato di Neumann e quello di Moore. Il primo include, oltre ad una cella centrale, le altre quattro connanti lungo i lati per un totale di 5 celle, mentre il secondo, oltre a queste, anche quelle lungo le diagonali e quindi 9 celle in tutto. Questi due esempi sono mostrati in gura 1.1, dove le celle bianche sono escluse. Figura 1.1: Vicinati di Neumann e di Moore. 1.3 Proprietà e classi 9 1.3 Proprietà e classi Nel caso più semplice di automa cellulare unidimensionale il vicinato può essere composto da tre celle, la centrale e le due adiacenti, inoltre si possono scegliere due stati codicati dai bit 0, 1. Questo tipo è detto automa cellulare elementare. Le congurazioni possibili per un vicinato di questo tipo sono 23 = 8 e gli automi cellulari possibili 28 = 256. Queste possono essere scritte con la notazione di Wolfram [4] che assegna come nome alla regola il numero decimale che, scritto in notazione binaria con 8 bit, fornisce la tabella dell'evoluzione. Ad esempio la regola dato lo stato al tempo t 30 in binario è 00011110 ovvero di tre celle, negli otto casi possibili, al tempo t+1 00011110 come la cella centrale assumerà come stato uno degli otto bit di in tabella 1.1. Stephen Wolfram nel 1984, basandosi sul comportamento Tabella 1.1: Regola 30. 111 110 101 100 011 010 001 000 0 0 0 1 1 1 1 0 Tabella 1.2: Regola 110. 111 110 101 100 011 010 001 000 0 1 1 0 1 1 1 0 durante l'evoluzione di un automa cellulare che parte da uno stato casuale, classicò gli automi cellulari elementari in 4 classi, dette classi di Wolfram [4], così costituite 1. Uniformi: Dopo un numero nito di passi, l'automa tende ad un'unica congurazione uniforme 1.4 Esempi 10 2. Periodici: L'automa produce schemi che si ripetono periodicamente, all'innito 3. Caotici: L'automa produce schemi aperiodici e/o caotici, le loro congurazioni rimangono casuali 4. Complessi: L'automa produce schemi complessi le cui strutture interagiscono tra di loro 1.4 Esempi Tra i 256 automi cellulari elementari alcuni hanno caratteristiche parti- colari, ad esempio le regole 30 e 110. Simulando la regola 30 per 100 passi partendo da una congurazione iniziale di celle tutte nello stato una centrale nello stato 1 0 eccetto si ottiene la piramide in gura 1.2, dove ogni ri- ga successiva rappresenta il sistema al tempo successivo. Una simulazione simile si ha in gura 1.3 con la regola 110 esplicitata in tabella 1.2. Que- st'ultima si è rivelata essere una macchina di Turing ossia è capace di computazione universale [5]. Si possono trovare degli automi cellulari che sono Figura 1.2: Evoluzione regola 30. legati alle equazioni dierenziali. Ad esempio data l'equazione delle onde 1.4 Esempi 11 Figura 1.3: Evoluzione regola 110. 1-dimensionale 2 ∂ 2a 2∂ a − c = 0, ∂t2 ∂x2 (1.1) si può scrivere l'equazione alle dierenze nite t t t at+1 − 2ati + at−1 i i 2 ai+1 − 2ai + ai−1 − c = 0. (δt)2 (δx)2 Ponendo il passo del reticolo δx = 1 e il passo temporale δt = 1, si ottiene at+1 = −ait−1 + [ati+1 + uti−1 + 2(1 − c2 )uti ] i che fornisce l'evoluzione temporale di un automa cellulare legato all'equazione dierenziale (1.1). Capitolo 2 Le diseguaglianze di Bell 2.1 La correlazione quantistica Un sistema quantistico descritto da |ψi = X ck |ψk i (2.1) k è detto essere in uno stato puro, dove |ψk i è una base dello spazio di Hilbert. Un insieme di stati si dice miscela se è separabile in sottoinsiemi ognuno descritto dallo stato |ψk i e rappresentante una frazione pk = |ck |2 del totale. La dierenza si vede nel calcolo delle probabilità del risultato di una misura di un'osservabile descritta da un operatore  |ak i = ak |ak i , Infatti la probabilità Ppuro (ak )  con hak |aj i = δk,j . di ottenere ak da una misura eettuata sul- l'insieme in uno stato puro è, usando la (2.1) 2 X Ppuro (ak ) = khak |ψi |ak ik2 = ci hak |ψi i |ak i = i X 2 X = |ci | |hak |ψi i|2 + c∗j ci hψj |ak i hak |ψi i . i i6=j 12 (2.2) 2.2 Il paradosso EPR 13 Mentre invece lo stesso calcolo fatto sul sistema miscela porta a Pmiscela (ak ) = X |ci |2 |hak |ψi i|2 . (2.3) i La dierenza tra le due probabilità date dalle equazioni (2.2) e (2.3) è il termine di interferenza X c∗j ci hψj |ak i hak |ψi i . i6=j Si può osservare che questo termine è nullo se l'operatore base |ψk i.  è diagonale nella In generale un sistema sico quantistico formato da più particelle è descritto da una funzione d'onda unica che non sempre è separabile in funzioni d'onda di singola particella. Questo è possibile, ad esempio, nel caso di H N particelle libere non interagenti, in questo caso, infatti, l'hamiltoniana del sistema è completamente separabile in una somma ciascuna Hk è riferita alla k−esima PN k=1 Hk , dove particella e la funzione d'onda totale si può scrivere come prodotto delle singole funzioni d'onda di ogni particella, ψ = QN k=1 ψk . Nel caso in cui lo stato del sistema sia non separabile si parla di stato correlato o entangled. La dierenza tra stati puri e miscele si può vedere nel calcolo della probabilità di misura dello spin di due particelle correlate. Si possono trovare insiemi di stati in cui, in uno la probabilità di misura simultanea dello spin per le due particelle è nulla (puro) e in un altro no (miscela). Ad esempio nel caso di due paricelle di spin stato di singoletto (spin totale 1 che sono in uno 2 0). 2.2 Il paradosso EPR Nel 1935 Einstein, Podolsky e Rosen pubblicarono un articolo [1] in cui, date le denizioni di realtà, località e completezza, si mostrava come la mec- 2.2 Il paradosso EPR 14 canica fosse una teoria sica non completa. Nell'articolo vengono date le seguenti denizioni: • realtà: condizione suciente per la realtà di una quantità sica è la possibilità di predirla con certezza, senza disturbare il sistema; • località: se due sistemi sono molto lontani spazialmente allora una perturbazione esterna agente sul primo sistema non può inuenzare istantaneamente e direttamente l'altro; • completezza: una teoria sica si dice completa se ogni elemento della realtà sica ha una controparte nella teoria. Il punto chiave è che se gli operatori commutano, [Â, B̂] 6= 0, Â, B̂ associati a due osservabili A, B non allora non si può avere una misura simultanea delle due quantità siche associate. Da qui i tre dedussero che: o 1) la descrizione quantistica della realtà data dalla funzione d'onda non è completa, o 2) le due quantità siche associate a operatori che non commutano non hanno realtà simultanea. Nel paradosso descritto nell'articolo, noto col nome paradosso EPR dalle iniziali dei tre autori, si prendono in considerazione due sistemi S1 , S2 , descritti da due operatori  e B̂ , modo che la conoscenza dell'autostato di i cui autostati sono correlati, in  determini l'autostato di B̂ in cui si trova il secondo sistema. Ad un certo istante, misurando l'osservabile A si può sapere il valore di realtà si deduce che terzo operatore Ĉ , B B senza disturbare S2 è un elemento di realtà per tale che [B̂, Ĉ] 6= 0, e dalla denizione di S2 . Se si introduce un allora il secondo sistema può essere descritto da due funzioni d'onda diverse. Negando la 1) si arriva ad una negazione della 2) e si conclude che la descrizione quantistica della realtà sica data dalla funzione d'onda non è completa. 2.3 Il teorema di Bell 15 2.3 Il teorema di Bell John Bell, nel 1964, pubblicò un articolo intitolato On the Einstein Podolsky Rosen paradox [2] in cui si mostra che non si riescono a riprodurre i risultati della meccanica quantistica con una teorie a variabili nascoste locali, rappresentate da un certo parametro o gruppo di parametri (discreti λ. o continui) Infatti, partendo da una teoria a variabili nascoste di questo tipo, si arriva a delle diseguaglianze, dette appunto di Bell, che devono essere soddisfatte. Le predizioni della meccanica quantistica non soddisfano que- ste relazioni e gli esperimenti sembrano confermare le predizioni della teoria quantistica. Per ottenere le diseguaglianze di Bell si considerino due particelle di spin 1 , in moto in direzioni l'una opposta all'altra, generate da una 2 particella in un singoletto di spin 1 |0, 0i = √ (|+i ⊗ |−i − |−i ⊗ |+i) , 2 durante un processo di decadimento che conservi lo spin. Si supponga di eettuare delle misure sulle due particelle con apparati di Stern-Gerlach e siano a e b i versori della direzione delle loro orientazioni. Chiamiamo con e B A rispettivamente le osservabili spin della prima particella lungo a e spin della seconda particella lungo b (in realtà si faranno i calcoli considerando come operatore anzichè la proiezione dello spin lungo una direzione n, ovvero l'operatore Ŝn = ~ 2 ~σ · n, semplicemente ~σ · n). Secondo l'idea di Bell si supponga che le misure di queste due osservabili dipendano non solo dalle orientazioni, ma anche da un insieme di variabili nascoste caratterizzate dal parametro λ. La misura dell'osservabile A dipenderà allora da a e λ, ma non da b per via dell'ipotesi di località. Si avranno dunque, nel caso in questione, i seguenti possibili risultati di misura A(a, λ) = ±1, B(b, λ) = ±1 . (2.4) 2.3 Il teorema di Bell Denotando con ρ(λ) 16 la distribuzione di probabilità di λ tale che Z ρ(λ) dλ = 1, si può scrivere la probabilità di misura di ρ(λ) ≥ 0 , A, B (2.5) in questo modo Z P (a, b) = ρ(λ)A(a, λ)B(b, λ) dλ . (2.6) Si noti come questo può essere scritto solo se le due misure sono statisticamente indipendenti. Scegliendo ora altre due direzioni per gli apparati misura di Stern-Gerlach, rappresentate dai nuovi versori â0 e b̂0 si ha, analogamente a prima, P (a, b0 ) Z = ρ(λ)A(a, λ)B(b0 , λ) dλ . (2.7) Calcolando la dierenza tra le relazioni (2.6) e (2.7) si ottiene P (a, b) − P (a, b0 ) Z = Z = ρ(λ)[A(a, λ)B(b, λ) − A(a, λ)B(b0 , λ)] dλ = ρ(λ)A(a, λ)B(b, λ)[1 ± A(a0 , λ)B(b0 , λ)] dλ+ Z − ρ(λ)A(a, λ)B(b0 , λ)[1 ± A(a0 , λ)B(b, λ)] dλ . (2.8) Da cui segue, ricordando le (2.4) e le (2.5), prendendo il modulo della (2.8) e facendo delle maggiorazioni tramite la diseguaglianza triangolare |P (a, b) − P (a, b0 )| Z ≤ ρ(λ) |A(a, λ)B(b, λ)| |1 ± A(a0 , λ)B(b0 , λ)| dλ+ Z ρ(λ) |A(a, λ)B(b0 , λ)| |1 ± A(a0 , λ)B(b, λ)| dλ = Z Z 0 0 = ρ(λ)[1 ± A(a , λ)B(b , λ)] dλ + ρ(λ)[1 ± A(a0 , λ)B(b, λ)] dλ = + = 2 ± [P (a0 , b0 ) + P (a0 , b)] . Da cui la diseguaglianza di Bell |P (a, b) − P (a, b0 )| + |P (a0 , b) − P (a0 , b0 )| ≤ 2 . (2.9) 2.3 Il teorema di Bell 17 Calcolando quantisticamente i valori che compaiono nella (2.9) si osserva che la relazione di diseguaglianza non è vericata. Infatti considerando un sistema di due particelle ciascuno di spin un singoletto di spin |0, 0i, 1 e tali che siano globalmente in 2 la funzione d'onda si scrive, come già visto, 1 |0, 0i = √ (|+i ⊗ |−i − |−i ⊗ |+i) . 2 In questo caso si possono associare alle osservabili stici  e B̂ A, B gli operatori quanti- ~σ = (σx , σy , σz ) dove 0 −i 1 0 , σz = , σy = i 0 0 −1 per mezzo delle matrici di Pauli 0 1 , σx = 1 0 ovvero  = ~σ · a , B̂ = ~σ · b . Sapendo che le matrici di Pauli agiscono sugli stati σx |±i = |∓i , σy |±i = ±i |∓i , si può calcolare il valore di aspettazione |±i in questo modo σz |±i = ± |±i P (a, b) P (a, b) = h0, 0| ~σ · a ⊗ ~σ · b |0, 0i = h0, 0| 3 X k=1 3 X σk ak ⊗ 3 X σk bk |0, 0i = k=1 3 h i iX 1h = h+| ⊗ h−| − h−| ⊗ h+| σk bk |+i ⊗ |−i − |−i ⊗ |+i , σ k ak ⊗ 2 k=1 k=1 (2.10) dove σk sono le tre componenti di ~σ e ak , bk le componenti dei versori a, b. Intanto si vede che 3 X k=1 σ k ak ⊗ 3 X h i σk bk |+i ⊗ |−i − |−i ⊗ |+i = (ax + iay ) |−i + az |+i ⊗ k=1 ⊗ (bx −iby ) |+i−bz |−i − (ax −iay ) |+i−az |−i ⊗ (bx +iby ) |−i+bz |+i . 2.3 Il teorema di Bell 18 Inserendo quest'ultima relzione nella (2.10) si ha inne i 1h P (a, b) = −az bz − (ax − iay )(bx + iby ) − (ax + iay )(bx − iby ) − az bz = 2 = −ax bx − ay by − az bz . Ovvero quantisticamente P (a, b) = −a · b = − cos θ dove θ (2.11) è l'angolo tra i versori a, b. Per mostrare come questo risultato non soddis le diseguaglianze di Bell (2.9), basta scegliere ad esempio a 0 = a − b b0 = (a · b)b e, detto a · b = cos α, si hanno, dalla (2.11), le probabilità quantistiche P (a, b) = −a · b = − cos α , P (a0 , b) = −a0 · b = −(a − b)b = − cos α + 1 , P (a, b0 ) = −a · (a · b)b = − cos2 α , P (a0 , b0 ) = −(a − b) · (a · b)b = − cos2 α + cos α . Sostituendo in (2.9) si ha 2 cos α − cos α + 1 + cos2 α − 2 cos α ≤ 2 . Questa diseguaglianza non è sempre vericata. Denendo la funzione f (α) come f (α) = cos2 α − cos α + 1 + cos2 α − 2 cos α − 2 , basta mostrare che f (α) > 0 per qualche α. che c'è almeno un intervallo per con α2 = −α1 ≈ 1, 86. (2.12) Dal graco in gura 2.1 si deduce α1 < α < α2 in cui è strettamente positiva, 2.4 Considerazioni 19 Figura 2.1: Graco di (2.12). f (α) α 2.4 Considerazioni Le diseguaglianze di Bell, che devono essere soddisfatte da una teoria a variabili nascoste locali, non si accordano con la meccanica quantistica e questo sembra essere suciente per evitare qualsiasi relazione tra quest'ultima e una teoria deterministica locale. Tuttavia, le previsioni della meccanica quantistica potrebbero essere il risultato di una legge di evoluzione classica e locale all scala di Planck, interpretata da un automa cellulare. considerazioni saranno fatte nel prossimo capitolo. Varie Capitolo 3 Dagli Automi Cellulari alla Meccanica Quantistica 3.1 Introduzione Si può partire dall'osservazione che un sistema classico che esibisce complessità a piccole distanze può essere manipolato a grandi distanze solo a livello statistico, anche se la sua legge di evoluzione è relativamente semplice. Queste caratteristiche sono racchiuse in un automa cellulare. La sua evoluzione è regolata da una legge matematica molto generale (un caso particolare sarà discusso in seguito) e la sua complessità è già evidente nel modello più semplice. Ad esempio in quello elementare, classicato da Wolfram con le sue 256 110 capace di computazione universale [5], come accennato nel capitolo congurazioni, sono presenti fenomeni di complessità come la legge 1. Un automa cellulare potrebbe manifestarsi, a grandi distanze rispetto alle dimensioni del suo reticolo di denizione, come un sistema quantistico. 20 3.2 Quantizzazione primitiva 21 3.2 Quantizzazione primitiva La procedura di quantizzazione primitiva è stata proposta da Gerard 't Hooft [3, 6] e si distingue dalla quantizzazione canonica. Quest'ultima prevede, in generale, il passaggio dalla teoria classica a quella quantistica con la sostituzione delle parentesi di Poisson con i commutatori in questo modo {A, H} → 1 [A, H] . i~ L'equazione del moto classica per la variabile (3.1) A dA ∂A X ∂A ∂A = + q˙k + p˙k = dt ∂t ∂qk ∂pk k ∂A X ∂A ∂H ∂A ∂H ∂A = + − = + {A, H} , ∂t ∂qk ∂pk ∂pk ∂qk ∂t k ottenuta usando le equazioni di Hamilton, si può scrivere dA = {A, H} , dt nel caso in cui A non dipenda esplicitamente dal tempo. In questo caso con la sostituzione (3.1) e considerando i valori medi, si ottiene i~ d hAi = h[A, H]i , dt (3.2) che costituisce un caso particolare del teorema di Ehrenfest. Infatti, usando le proprietà dei prodotti scalari e l'equazione di Schrödinger, si ha h ∂ i d d ∂ ∂ hAi = i~ (ψ, Aψ) = i~ ( ψ, Aψ) + (ψ, A ψ) + (ψ, Aψ) = dt dt ∂t ∂t ∂t ∂ ∂ = −(ψ, HAψ) + (ψ, AHψ) + i~(ψ, Aψ) = (ψ, [A, H]ψ) + i~(ψ, Aψ) = ∂t ∂t ∂ = h[A, H]i + i~ A . ∂t i~ Da cui la (3.2) se p. ∂ A ∂t = 0, come ad esempio accade nel caso in cui A = x, A = In questa procedura di quantizzazione standard si introduce la costante 3.2 Quantizzazione primitiva di Planck ridotta ~, 22 che è prettamente quantistica, mentre la procedura di quantizzazione primitiva parte da un insieme di equazioni classiche del moto e pruomuove ciascuno stato classico ad uno stato di uno spazio di Hilbert. L'evoluzione temporale degli stati, dal tempo operatore Û (t1 , t2 ). t1 al tempo t2 , è data da un Se la natura fosse continua e non discreta si avrebbe un insieme di stati non numerabile il che potrebbe rappresentare un problema, questo è uno dei motivi per cui si parte da un modello discreto ed è forse l'assunzione più ragionevole. In questo caso l'operatore Û può essere costruito in modo sistematico, inoltre se si parte da un sistema che sia reversibile nel tempo, ovvero si può ottenere il passato dal futuro in modo del tutto analogo all'ottenere il futuro dal passato, allora l'operatore è unitario. E' possibile quindi trovare un operatore Ĥ , detto hamiltoniana, tale che Û (t1 , t2 ) = e−i(t2 −t1 )Ĥ , con Ĥ metrie. hermitiano e di cui vanno stabilite la positività e le eventuali simSe dalla teoria costruita attraverso la procedura di quantizzazione primitiva emerge un'hamiltoniana con le caratteristiche necessarie per una teoria quantistica allora si ha una struttura matematica dalle origini classiche, ma capace di descrivere quantisticamente la natura. Per avere una descrizione nale è comunque necessario tenere conto della relatività generale nella costruzione matematica del modello. I gradi di libertà che descrivono gli stati classici originali del sistema sono descritti da operatori particolari detti Beable e questo sarà trattato nel prossimo paragrafo. L'esempio più semplice di quantizzazione primitiva di un sistema classico è il modello detto modello della ruota dentata [7]. Si ha un ruota con angolo 2π/N ad ogni incremento discreto di tempo N δt. denti che gira di un Gli N stati assunti dal sistema e legati all'orientazione della ruota sono promossi a stati di uno 3.2 Quantizzazione primitiva 23 spazio di Hilbert nito-dimensionale e si indicano con i ket: |0i , |1i , |2i , · · · , |N − 1i . Ponendo δt = 1 in unità temporali opportune, l'evoluzione del sistema può essere scritta come t→t+1 Gli stati |ni |ni → |n + 1i , se |ni → |0i , se 0≤n≤N −2 (3.3) n = N − 1. possono essere visti come una base ortonormale dello spazio di Hilbert e dunque, usando la meccanica quantistica semplicemente come strumento matematico, un generico stato |si = N −1 X |si può essere scritto come an (t) |ni , (3.4) n=0 dove dall'ampiezza vi nello stato |ni an (t) si ricava la probabilità al tempo t. |an (t)|2 che il sistema si tro- In meccanica quantistica si può trovare un operatore di evoluzione temporale legato all'hamiltoniana. In questo caso specico, data l'evoluzione del sistema descritta dalla (3.3) l'operatore unitario in questione è 0 ··· 1 Û = 0 0 .. .. 0 0 . 0 . .. 1 1 . 0 , . . . 0 che naturalmente agisce sullo stato generico in questo modo Û |s(t)i = |s(t + 1)i . (3.5) 3.2 Quantizzazione primitiva Facendo agire l'operatore Û |s(t)i = Û N −1 X Û 24 sullo stato |s(t)i si ottiene an (t) |ni = Û a0 (t) |0i+a1 (t) |1i+· · ·+aN −1 (t) |N − 1i = n=0 0 ··· 1 = 0 0 .. .. 0 . 0 . .. 0 1 . 1 0 . . . 0 0 0 1 ! .. . 1 0 a0 (t) . + a1 (t) + · · · + aN −1 (t) = . 0 0 . 1 0 0 = aN −1 (t) |0i + a0 (t) |1i + · · · + aN −2 (t) |N − 1i . t l'azione di Da cui si osserva che all'istante a (t) 0 a1 (t) .. . aN −1 (t) D'altra parte, l'azione di Û N −1 X Û Û comporta la sostituzione a (t) N −1 a0 (t) .. . . aN −2 (t) → (3.6) sullo stato (3.4), denita dalla (3.5), porta a an (t) |ni = a0 (t + 1) |0i + a1 (t + 1) |1i + · · · + aN −1 (t + 1) |N − 1i . n=0 Confrontando con la (3.6) si ha inne, aN −1 (t) a0 (t) .. . aN −2 (t) ∀ t ∈ N, = a0 (t + 1) a1 (t + 1) . . . . aN −1 (t + 1) Si vede che la probabilità di avere un certo stato del suo coeciente in (3.4), al tempo dente al tempo t. |ni, data dal modulo quadro t+1 è la stessa che aveva lo stato prece- Si può anche passare ad un'altra base, come in meccanica 3.3 Gli operatori Beable e Changeable quantistica, in cui Û 25 è diagonale e dove, quindi, compaiono i suoi autovalori, ovvero 1 0 0 e−2πi/N Û = .. .. . . 0 ··· ··· 0 0 . . . .. . 0 e−2πi(N −1)/N 0 Ĥ , Ne consegue che l'operatore hamiltoniana . denito da Û = e−iĤ , può es- sere scritto come 0 0 0 1 2π Ĥ = N ... . . . 0 ··· ··· 0 . 0 N −1 . . . 0 .. 0 . (3.7) Si può osservare la forte analogia, a parte una costante additiva, con i livelli energetici dell'oscillatore armonico quantistico, infatti (δt = 1) 2π/N , in queste unità, è proprio la velocità angolare o pulsazione del sistema. Se nella de- nizione di hamiltoniana si mettesse, come nel caso quantistico i Û = e− ~ δtĤ , allora come fattore moltiplicativo per la matrice (3.7) si avrebbe 2π~ . N δt 3.3 Gli operatori Beable e Changeable Si possono denire, come proposto da 't Hooft [3], tre classi di operatori. I beable sono operatori che misurano alcune proprietà ontologiche di uno stato, senza modicarlo in alcun modo. Da questa denizione segue che tutti gli operatori beable ad ogni istante commutano tra di loro, ovvero se B̂ e B̂ 0 3.3 Gli operatori Beable e Changeable 26 sono beable allora [B̂(t), B̂ 0 (t0 )] = 0, ∀t, t0 . Esiste inoltre una base, detta base ontologica, in cui tutti i beable sono diagonali in ogni istante. Si denisce changeable, invece, un operatore che trasforma uno stato ontologico in un altro stato ontologico, ovvero eettua un cambiamento di stato. Inne si dice superimposable un operatore che mappa uno stato ontologico in una sovrapposizione di diversi stati ontologici. Una tipica rappresentazione di queste tre classi di operatori nella base ontologica è data dalle matrici B= ∗ ∗ C= ∗ ∗ , ∗ ∗ ∗ ∗ , ∗ ∗ S= ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Un esempio di beable può essere, nella base ontologica, l'operatore di proiezione P̂k = |ki hk| . Secondo 't Hooft una teoria in cui uno stato che ha una interpretazione ontologica evolve in uno che non ne ha non può essere considerata una teoria deterministica. In meccanica quantistica, ad esempio, l'operatore all'operatore di spin Sz = ~ 2 σz , legato può essere visto come un beable se si misura lo spin lungo l'asse z, mentre invece di σz , σx e σy sono changeable se visti nella base σz , in questo caso non esiste una base ontologica in cui sono diagonali e in cui commutano tra di loro. In meccanica quantistica, dunque, un operatore beable può trasformarsi in changeable, infatti l'operatore come una rotazione dell'operatore σx . σy può essere visto Per quanto detto se si cerca una teo- ria deterministica alla base dell'evoluzione dell'universo allora la meccanica 3.4 Un modello di Automa Cellulare quantistica non è una teoria nale. 27 La trasformazione di un operatore da beable a changeable è dovuto al fatto che gli operatori in meccanica quantistica potrebbero essere funzioni più o meno complicate di qualche teoria sottostante. Inoltre 't Hooft crede [7] che ciò sia riconducibile, ad esempio, all'azione di una trasformazione di un gruppo di rinormalizzazione. 3.4 Un modello di Automa Cellulare Ci sono inniti modi di scegliere un modello di automa cellulare, in questo caso ci mettiamo, seguendo l'idea di 't Hooft [3], in uno spazio di dimensionalità (D + 1) indicate da con spazio e tempo entrambi discreti, in cui le posizioni sono ~x = (x1 , x2 , · · · , xD ) con xk interi. Le variabili siche vengono scelte intere modulo qualche numero naturale N. G(~x, t) Inoltre si sceglie di limitare i gradi di libertà del sistema solo su siti reticolari spazio-temporali pari, quindi D X xk + t = pari . k=1 Date le condizioni iniziali G(~x, t = 0) e G(~x, t = 1), si sceglie la legge di evoluzione nel modo seguente G(~x, t + 1) = G(~x, t − 1)+ + Q G(x1 ± 1, x2 , · · · , xD , t), · · · , G(x1 , x2 , · · · , xD ± 1, t) se D X mod N ∈ N, xk + t = dispari , (3.8) k=1 così da avere grandezze denite solo su posizioni spazio-temporali pari. In questa formula la grandezza sica G assume valori interi modulo qualche numero naturale. Si noti come dalla (3.8), in questa forma, si possa trovare G(~x, t − 1) a partire dai tempi successivi. Passando dalla rappresentazione 3.4 Un modello di Automa Cellulare 28 di Heisenberg in cui gli stati sono ssi e gli operatori dipendono dal tempo, alla rappresentazione di Schrödinger, gli operatori X(~x) se agiscono nei siti pari e Y (~x) G vengono chiamati se agiscono in quelli dispari. L'ope- ratore di evoluzione su due passi temporali può essere costruito alternando l'aggiornamento di X(~x) Y (~x) e per mezzo di due operatori A, B U (t, t − 2) = A · B , dove A X(~x) aggiorna e B aggiorna Y (~x). L'aggiornamento dato da questi due operatori è costituito da più parti, ognuna denita su un sito reticolare ~x, per cui si possono scrivere come Y A= A(~x) , ~ x pari riferendosi, come detto, A Y B= B(~x) , (3.9) ~ x dispari ai soli siti pari e B ai soli dispari. Inoltre valgono le regole di commutazione [A(~x), A(~x0 )] = 0 , Gli operatori ~x0 A e B [B(~x), B(~x0 )] = 0 . invece non commutano tra di loro sempre, infatti se sono vicini, ovvero se |~x − ~x0 | = 1, ~x e allora [A(~x), B(~x0 )] 6= 0 . Gli operatori A, B agiscono su un sottospazio nito di Hilbert e possono essere scritti come A(~x) = e−ia(~x) , B(~x) = e−ib(~x) . Si può introdurre l'operatore traslazione di 1 unità di X(~x), detto Tx (~x), che agisce come eiTx (~x) |X(~x)i = |X(~x) − 1 (3.10) mod N ∈ Ni . 3.4 Un modello di Automa Cellulare Per una traslazione 29 −Q({Y }) si può usare l'operatore e−iQ({Y })Tx (~x) e dunque si può porre a(~x) = Q({Y })Tx (~x) . Infatti, dalla (3.10), si ha che A(~x) |X(~x)i = e−ia(~x) |X(~x)i = e−iQ({Y })Tx (~x) |X(~x)i = = |X(~x) + Q({Y }) In modo simile, introducendo un operatore Ty (~x) mod Ni . si ha B(~x) |Y (~x)i = e−ib(~x) |Y (~x)i = e−iQ({X})Ty (~x) |Y (~x)i = = |Y (~x) + Q({X}) Si vede che per A(~x) e a(~x) e b(~x) mod Ni . valgono le stesse relazioni di commutazioni di B(~x) [a(~x), a(~x0 )] = 0, [b(~x), b(~x0 )] = 0, |~x − ~x0 | > 1 → [a(~x), b(~x0 )] = 0 . Grazie a queste, dalle relazioni (3.9) si può scrivere A = e−i P ~ x pari a(~ x) B = e−i , P ~ x dispari b(~ x) . Come già detto scriviamo l'operatore di evoluzione temporale un operatore che fa evolvere alternativamente le grandezze pari e sui dispari, cioè X(~x) e Y (~x), U (t, t − 2) = A · B = e−i P per ~ x pari t G(~x) denite sui pari, in questo modo a(~ x) −i e P ~ x dispari dove abbiamo introdotto l'operatore hamiltoniana commutano si può valutare U (t, t−2) come H. b(~ x) = e−2iH , Siccome A e B non H con la formula di Baker-Campbel-Hausdor [8], 3.5 Esempi 30 che è la seguente eC eD = eR , 1 1 1 1 R = C + D + [C, D] + [C, [C, D]] + [[C, D], D] + [[C, [C, D]], D], · · · 2 12 12 24 (3.11) Questa serie diventa R = C+D se C e D commutano. Generalmente si assume che questa converga, 't Hooft ha mostrato, [3, 6] che la serie (3.11), usata con C = −i P ~ x pari a(~x), D = −i solo se presa tra due autostati |E1 i e P ~ x dispari |E2 i b(~x) e R = −2iH , converge che soddisfano 2 |E1 − E2 | < 2π~/δt , dove δt (3.12) è l'unità temporale del reticolo. La convergenza avviene quindi solo se si prendono in considerazione stati la cui dierenza di energia è minore dell'energia di Planck. 3.5 Esempi Tornando alla formula (3.8) si può cercare di costruire il modello più semplice assumendo che le dimensioni spaziali del reticolo siano quindi una dimensione spazio-temporale del vettore ~x sono semplicemente (2+1). xµ = (x0 , x1 ) D = 2 In questo caso le componenti e dunque per la funzione in (3.8) si può scrivere (tralasciando la dipendenza temporale che in all'istante e Q Q è t) Q = Q G(x0 + 1, x1 ), G(x0 − 1, x1 ), G(x0 , x1 + 1), G(x0 , x1 − 1) La grandezza sica G(x0 , x1 ) può essere vista come una matrice quadrata avente le dimensioni del reticolo, dunque denendo gli indici Gi,j ≡ G(i, j) , i, j , si ha 3.5 Esempi 31 per cui Q = Q Gi+1,j , Gi−1,j , Gi,j+1 , Gi,j−1 . Si possono fare degli esempi e simulazioni scegliendo una particolare espressione per la Q. Nel farlo si può scegliere di inserire delle simmetrie, ad esempio scegliere una legge che sia simmetrica rispetto alla destra e sinistra o all'alto e basso, essendoci, in questo modello, D=2 dimensioni spaziali. Volendo introdurre questa simmetria di parità la funzione Q diventa Q = Q F1 f1 (Gi+1,j ), f1 (Gi−1,j ) , F2 f2 (Gi,j+1 ), f2 (Gi,j−1 ) , dove f1 , f2 sono funzioni generiche a una variabile e F1 (x, y) = F (y, x), F1 , F2 tali che F2 (x, y) = F2 (y, x) . Il caso più semplice è dato dalla scelta banale Figura 3.1: Evoluzione (3.13), a partire dalla congurazione (3.14). 3.5 Esempi 32 F1 (x, y) = F2 (x, y) = x + y , f1 (x) = f2 (x) = x , e quindi si può scegliere Q in questo modo Q = Q Gi+1,j + Gi−1,j , Gi,j+1 + Gi,j−1 = Gi+1,j + Gi−1,j + Gi,j+1 + Gi,j−1 . La legge di evoluzione per l'automa cellulare, ovvero la (3.8), diventa ora Gi,j (t + 1) = Gi,j (t − 1) + Gi+1,j + Gi−1,j + Gi,j+1 + Gi,j−1 se D X mod N, xk + t = dispari . (3.13) k=1 Date le condizioni iniziali per t=0 e t=1 si può fare una simulazione di Figura 3.2: Evoluzione (3.13), a partire da una congurazione casuale, vista su un reticolo 70 × 70. questo automa cellulare per osservarne l'evoluzione temporale. Scegliendo le 3.5 Esempi 33 Figura 3.3: Evoluzione (3.15), a partire dalla congurazione (3.14). seguenti matrici per ··· 0 Gi,j (t = 0) 0 ··· Gi,j (t = 1) e 0 · · · 0 · · · 0 · · · . . . . Gi,j (0) = 0 . 1 . 0, · · · 0 · · · 0 · · · 0 ··· 0 ··· 0 che sono matrici Gi,j (0) = (2n + 1) × (2n + 1) 1, se 0, altrimenti 0 ··· 0 ··· 0 ··· 0 ··· 0 . . .. . . Gi,j (1) = . 0 . 1 . , 0 ··· 0 ··· 0 ··· 0 ··· 0 ··· con i=j =n+1 , ··· Gi,j (1) = 1, se 0, altrimenti i = n + 1, j = n + 2 , (3.14) in cui il valore non nullo è in celle come richiesto. Scegliendo (i, j) al tempo n = 22, (25 × 25), e t per cui N=5 i+j+t è pari si ottiene, al tempo 3.5 Esempi t = 19, 34 l'evoluzione in gura 3.1. casuali per e dunque t=0 e t = 1, ad esempio date da due matrici sempre con n = 20 41×41 di 1 in posizioni (i, j) casuali tali che, come al solito, i+j +t sia pari, si ottiene, al tempo N = 5. Partendo invece da due congurazioni t = 15, l'evoluzione in gura 3.2, sempre con Scegliendo una legge meno simmetrica si ottengono risultati diversi, ad esempio si può partire da Q = oor(30 sin(Gi−1,j )) + Gi+1,j + Gi,j+1 + Gi,j−1 , dove la funzione oor(x) è l'intero questa in (3.8) con N = 5, n = 20 n più vicino a x tale che e le (3.14) si ha, a n ≤ x. t = 15, (3.15) Usando la simulazione in gura 3.3. Invece, sempre usando (3.15) con le stesse condizioni, eccetto Figura 3.4: Evoluzione (3.15), a partire da una congurazione casuale, vista su un reticolo 70 × 70. per quelle iniziali che sono matrici 41 × 41 di 1 in posizioni casuali (con le 3.6 Perdita di informazioni 35 prescrizioni analoghe agli esempi precedenti) si ottiene l'evoluzione in gura 3.4. 3.6 Perdita di informazioni Le variabili nascoste nel modello di automa cellulare sono rappresentate dalla base ontologica. Conoscendo lo stato delle cose per due istanti consecutivi si può ricavare l'evoluzione successiva applicando l'operatore di evoluzione temporale in modo univoco. Senza alcun tipo di perdita di informazioni si potrebbe anche ricavare il passato dal futuro senza problemi così come il futuro dal passato. Nel caso di due particelle correlate certi valori dell'una implicano altri valori per l'altra. La causalità potrebbe spiegare questo fatto, ad esempio supponendo che le due abbiano una causa comune nel passato. La località dell'automa cellulare alla scala di Planck può portare dunque a fenomeni apparentemente non locali alla scala atomica o subatomica, dove si usa la meccanica quantistica, perché una perturbazione un sistema unidimensionale per semplicità) al tempo zione xi (t0 ), alle celle la cella in una cella in posi- evolvendo nel tempo, si propaga come bit di informazione no xi+k e xi+n (t) della cella t0 P fatta (supponiamo xi−k con k ∈ N. evolva in xi−n (t) in Ciò, a grande distanza di scala, può far si che xi+n (t + 1) xi−n (t + 1) comune che è la perturbazione P. in un modo correlato con l'evoluzione perché le celle condividono un passato in Questo potrebbe spiegare perché esistono particelle correlate alle scale della meccanica quantistica che invece evolvono alla scala di Planck in modo totalmente classico e deterministico. Naturalmente nella visione di un Big Bang responsabile della nascita dell'universo è sempre possibile trovare un istante nel passato in cui qualsiasi coppia di particella ha avuto una causa comune. Potrebbe dunque essere sbagliato 3.6 Perdita di informazioni 36 considerare le particelle come se fossero statisticamente indipendenti. Nell'esperimento mentale discusso nella sezione 2.3 con il quale si sono ricavate le diseguaglianze di Bell non si è tenuto conto inoltre degli eetti del vuoto che circonda la sorgente (particella in singoletto di spin che decade) e le particelle prodotte. Il ruolo del vuoto e la sua evoluzione potrebbero essere cruciali nel determinare la correlazione dopo la separazione. Queste sono le ragioni per cui le diseguaglianze di Bell sembrano non essere applicabili al modello di automa cellulare proposto da 't Hooft. L'indipendenza statistica usata da Bell nel suo articolo compare in questo lavoro nell'equazione (2.6). In una visione deterministica anche la scelta dell'orientazione dell'apparato di misura, ad esempio dei magneti di Stern e Gerlach, è predeterminata, ovvero in linea di principio da un'origine comune tutto può essere correlato. Infatti la decisione presa all'ultimo momento da un misuratore è unica e non si può escludere che sia stata solo apparentemente arbitraria. L'evoluzione proposta dalla formula (3.8) è reversibile nel tempo, ovvero per ogni condizione iniziale lo stato successivo può essere predetto senza ambiguità. Tuttavia, come proposto da 't Hooft [9, 10], potrebbe essere necessario introdurre una sorta di perdita di informazioni sia per problemi legati all'esistenza di uno stato fondamentale per l'hamiltoniana sia per ritrovare l'apparente non correlazione alla scala macroscopica. Occorre introdurre un meccanismo per cui non è detto che sia possibile estrapolare il passato a partire dal presente, a causa appunto di perdita di informazioni. Si introduce dunque il concetto di classe di equivalenza, ovvero due distinti stati ontologici ad un istante si dicono equivalenti se al tempo successivo t = t0 t = t0 + δt sono evoluti nello stes- so stato. L'informazione persa avviene dunque quando due stati evolvono in uno stesso stato. Un esempio di perdita di informazione può essere dato da un operatore di evoluzione temporale non unitario del tipo 3.6 Perdita di informazioni 37 0 1 0 U = 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 , 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 che agendo sugli stati fornisce l'evoluzione mostrata in gura 3.5 In questo Figura 3.5: esempio di perdita di informazioni esempio gli stati |1i e |5i evolvono nello stesso stato no una classe di equivalenza come pure gli stati |2i |2i e e dunque forma- |6i. Si può vede- re uno stato quantistico come una classe di equivalenza di stati, in questo modo, nell'esempio di gura 3.5, si avrebbero solo {{|1i , |5i}, {|2i , |6i}, |3i , |4i} 4 nuovi stati ovvero e si potrebbe costruire un nuovo operatore U unitario che agisce su questi nuovi stati (classi di equivalenza), come ad esempio 0 0 0 1 1 0 0 0 . U = 0 1 0 0 0 0 1 0 3.6 Perdita di informazioni 38 Come già detto nella sezione 3.3 gli stati ontologici, alla scala di Planck, sono descritti da operatori beable, mentre gli stati quantici sono gestiti da osservabili associate a operatori che sono ora changeable per via delle informazioni perse. 't Hooft pensa che nel passaggio dalla scala di Planck alla scala quantistica avviene un mescolamento di operatori beable e changeable a causa del processo di rinormalizzazione, necessario per ottenere le leggi siche a grandi scale di distanza [7]. Nell'esempio di gura 3.5 sapendo che ad un certo istante si ha lo stato precedente si aveva lo stato |2i |1i o non si è in grado di stabilire se all'istante |5i. Soermandosi sul valore di una cella di un modello di automa cellulare e su quello delle sue 2D C celle vicine, si può generalizzare questo fatto supponendo che la perdita di memoria sia minima, anche se senza la legge di evoluzione non si può avere un quadro nale. Sulla scorta del lavoro di Persoon [11] supponiamo che data una certa congurazione di questi valori delle lo stato al tempo 2D + 1 celle al tempo t non sia possibile stabilire t − 1 della cella C tra due scelte a1 possono essere associate le probabilità p e 1−p e a2 . A questi due valori che in linea di principio, senza altre indicazioni, potrebbero essere entrambe 1 . 2 Se assumiamo che la perdita di memoria sia minima allora una di queste due probabilità deve essere molto piccola. Chiamiamo con T la distanza temporale dopo la quale una perturbazione ha una probabilità minore di 1 di essere rilevata. 2 celle saranno allora dette indipendenti se la loro distanza è maggiore di Due 2T . In questo caso non avrebbe senso parlare di causa comune nel passato. Per quanto detto nora riguardo all'indipendenza statistica per le diseguaglianze di Bell il parametro T dovrebbe essere di ordine macroscopico. Ci sono due casi, o la legge di evoluzione non lascia ambiguità di questo tipo (non c'è perdita di informazioni) oppure si. In quest'ultimo caso se N è il numero di 3.6 Perdita di informazioni 39 gradi di libertà di ciascuna cella, la probabilità per una certa congurazione A di una cella C e dei suoi 2D vicini si può scrivere come P(A) = N−(2D+1) . a per n a n . 2D+1 La probabilità di non avere un'ambiguità 1− N 1 e quindi cercando la condizione di 2 Ponendo questa probabilità minore di ambiguità, si ottiene passi temporali è data da ln 12 n≤ , a ) ln(1 − N2D+1 Ovvero: e Se n1 1 ln 2 n a ≤1− N2D+1 . si può espandere in serie l'esponenziale e 1 ln 2 n ≈1+ ln 21 e avere n a ln 2 ≥ 2D+1 , n N da cui, inne N2D+1 ≥ Supponiamo ora che n sia del tempo di Planck (tP T =1 ovvero 1043 na . ln 2 (3.16) così da avere tanti step temporali ciascuno ≈ 5, 39 · 10−44 ), tali che alla ne sia passato circa sec. Assumiamo inoltre che la probabilità per l'ambiguità sia piccola, a = 10−k con k>1 e k ∈ N, la (3.16) diventa N2D+1 ≥ e, risolvendo per N, 1043−k , ln 2 si ha 43−k N ≈ 10 2D+1 . Questa è la condizione a soglia, ssati k e D, per avere perdita di memoria dopo un secondo è necessario che il minimo di gradi di libertà sia maggiore 3.6 Perdita di informazioni 40 43−k di 10 2D+1 . Come già detto in precedenza per poter non applicare le disegua- glianze di Bell occorre che la correlazione che porta la dipendenza statistica sia presente solo su scala microscopica dove si applica la meccanica quantistica. Il numero di gradi di libertà della cella dell'automa cellulare e la legge di evoluzione nale non sono noti e sicuramente dovranno tenere conto di questa osservazione. La perdita di informazioni che porta a classi di equivalenza può, come già detto, essere favorevole all'apparente libero arbitrio presente a distanza macroscopica. Si può associare alla scala dei tempi una scala di energie, infatti in unità di misura naturali si hanno ~c = 1 ≈ 200 MeV fm , c = 1 ≈ 3 · 108 m s−1 quindi 1 MeV ≈ Ad un evento che coinvolge N 1 MeV 1 . 6, 7 · 10−22 s di energia si associa una durata di circa Figura 3.6: Graco di (3.17). k 10−21 s, a cui corrispondono circa durata del tempo di Planck tP . n = 1022 step temporali ciascuno della Dunque la (3.16), sempre con a = 10−k 3.6 Perdita di informazioni 41 (probabilità dell'ambiguità iniziale), assumendo le tre dimensioni spaziali D = 3, porta a N7 ≥ 1, 2 · 1022−k ≈ 1, 7 · 1022−k . ln 2 Durante un evento che coinvolge di memoria maggiore di 1 MeV di energia si ha probabilità di perdita 1 quando il numero di gradi di libertà di una cella è 2 circa N ≈ 10 22−k 7 . (3.17) Il graco in gura 3.6 mostra l'andamento dei gradi di libertà di una cella in funzione dell'esponente k della probabilità iniziale ambiguità per un processo di energia 1 MeV. a = 10−k N di avere un Conclusioni In questo lavoro si è partiti, dopo aver dato la denizione formale di automa cellulare, con la dimostrazione delle diseguaglianze di Bell in un caso particolare con particelle di spin 1 . Queste mostrano che una teoria locale 2 e deterministica non può portare alle predizioni della meccanica quantistica. Successivamente si è mostrato come la meccanica quantistica possa essere vista come potente strumento matematico ben adattabile anche a sistemi classici, tramite la procedura di quantizzazione primitiva, vedendo gli stati classici come stati di uno spazio di Hilbert e arrivando alla costruzione di un operatore di evoluzione e di un'hamiltoniana. Si è introdotto un esempio di automa cellulare con una legge di evoluzione perfettamente deterministica nel senso classico e reversibile nel tempo. In questo approccio si è fatto uso delle regole di commutazione di operatori per esprimere la località dell'automa cellulare fortemente legata alla discretizzazione di spazio e tempo in modo da avere una velocità massima del reticolo che, in unità di Planck, è proprio la velocità della luce nel vuoto c. Le diseguaglianze di Bell sembra- no non essere applicabili a questo tipo di approccio in quanto le probabilità delle due particelle (nell'esempio discusso due elettroni in singoletto di spin) non sono statisticamente indipendenti e dunque non è possibile usare, per il calcolo della probabilità simultanea di misura degli spin, il prodotto delle probabilità o la loro convoluzione pesata da una funzione di distribuzione 42 43 delle variabili nascoste. In breve il modello proposto da 't Hooft parte da processi microscopici visti come interazioni deterministiche tra le semplici e classiche celle dell'automa cellulare. Si è parlato della necessità di ampliare la legge di evoluzione dell'automa cellulare in modo che non sia più reversibile nel tempo e sia legata ad una perdita di informazioni così da poter avere la descrizione macroscopica e non correlata di fenomeni classici, mantenendo però la correlazione alla scala quantistica che permette di aggirare le diseguaglianze di Bell. Ringraziamenti Vorrei ringraziare tutte le persone che mi hanno sostenuto e aancato in questo percorso di Laurea e nella stesura di questa tesi, in modo speciale la mia danzata Sabrina, i miei genitori Alba e Giovanni, mia zia Graziella, Paolo e mia zia Concetta. Un grazie particolare al mio relatore, Dr. Simone Pacetti, per tutto il tempo che mi ha dedicato durante questo percorso. 44 Bibliograa [1] A. Einstein, N. Rosen e B. Podolsky, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935). [2] J.S. Bell, On the Einstein-Podolsky-Rosen paradox, Physica 1, 195 (1964). [3] G. 't Hooft, Entangled quantum states in a local deterministic theory, SPIN-09/30, ITP-UU-09/77, arXiv:0908.3408[quant-ph]. [4] Stephen Wolfram, A new Kind of Science, US, Wolfram Media, 2002. [5] Genaro J. Martínez, Juan C. Seck-Tuoh-Mora e Hector Zenil, Computation and universality: class IV versus class III cellular automata, Journal of Cellular Automata, 7(5-6), 393-430, 2013, arXiv:1304.1242[nlin.CG]. [6] G. 't Hooft, Classical cellular automata and quantum eld theory, in Int. J. Mod. Phys. A 25, 4385 (2010). [7] G. 't Hooft, Hilbert space in deterministic theories, SPIN-09/7, ITPUU-09/07, in Stueckelberg Lectures, Pescara, Italy, July 8-15, 2008. [8] H. Baker, Proc Lond Math Soc (1) 34 347360 (1902) ibid (1) 35 (1903) 333374; ibid (Ser 2) 3 2447 (1905); J. Campbell, Proc Lond Math Soc 45 46 28 381390 (1897) ibid 29 (1898) 1432; F. Hausdor, Ber Verh Saechs Akad Wiss Leipzig 58 1948 (1906) [9] G. 't Hooft, Determinism beneath quantum mechanics, SPIN-2002/45, ITP-UU-02/69, arXiv:0212095[quant-ph]. [10] G. 't Hooft, The mathematical basis for deterministic quantum mechanics, in Beyond the Quantum, World Scientic, Th. M. Nieuwenhuizen et al., pp.3-19, quant-ph/0604008. [11] P.G.J. Persoon, The Cellular Automaton and Perspectival Hidden Variable And how they relate to Bell's Inequalities, Master Thesis, Institute for Theoretical Physics, Universiteit Utrecht, 07 August 2013.