II Principio della termodinamica
• Il primo principio della termodinamica esprime ciò che si
conserva:
• ogni forma di energia può trasformarsi in un’altra forma di
energia, ma l'energia totale rimane costante.
UB = UA + Q + (– W)
Stato Iniziale
UA
Calore
Q
Lavoro
W
Stato Finale
UB
UB = UA + Q + (– W)
II principio
• Il primo principio non dice nulla sul verso secondo cui una
trasformazione avviene.
La natura fissa un verso alle trasformazioni:
• un gelato, fuori dal frigo, si scioglie
• il caffè bollente si raffredda,
• Mettendo a contatto due corpi, uno caldo e
l’altro freddo, il calore fluisce sempre dal
corpo caldo al freddo.
• Il tempo scorre sempre in avanti
• L'energia meccanica e il lavoro si possono trasformare
completamente in energia termica;
• la trasformazione inversa di energia termica in lavoro può
essere ottenuta soltanto mediante una macchina
Calore
Calore 1
Lavoro
Lavoro
Calore 2
Questa limitazione sembra essere una legge della natura
ed è espressa in diversi modi dal secondo principio della
termodinamica.
II principio della termodinamica
(enunciato di Kelvin Planck).
E' impossibile che una macchina operante in ciclo produca
come solo effetto quello di sottrarre calore a un termostato e
produrre una quantità equivalente di lavoro .
Termostato
Q
Macchina
termica
Lord Kelvin – Thomson William fisico inglese 1824 – 1907.
Lord Kelvin – Thomson William fisico inglese 1824 – 1907.
A 10 anni fu ammesso all’università di Glasgow. Si occupò
A 10 anni fu ammesso all’università di Glasgow. Si occupò
principalmente di termodinamica e di elettromagnetismo
principalmente di termodinamica e di elettromagnetismo
Max Planck Fisico tedesco 1858 – 1947. I suoi studi sulla
Max Planck Fisico tedesco 1858 – 1947. I suoi studi sulla
radiazione di corpo nero sono all’origine della moderna
radiazione di corpo nero sono all’origine della moderna
meccanica quantistica.
meccanica quantistica.
Lavoro
Attenzione: il secondo principio non dice che è impossibile
trasformare completamente il calore in lavoro, infatti
questa trasformazione avviene in ogni espansione
isotermica come nel dispositivo in figura,
ma che è impossibile trasformare completamente il calore in
lavoro in modo continuo (ciclico)
Clicca sull’immagine
Q>0
W>0
Il modo in cui funziona una macchina termica è
indicato nello schema seguente:
Termostato caldo Tc
Qc
Macchina
termica
Lavoro
Qf
Termostato freddo Tf
η=W
Qc
<1
Quindi, il rendimento di una macchina termica non può mai essere = 1
II principio della termodinamica
(Enunciato di Clausius)
E' impossibile che una macchina frigorigena
operante in un ciclo produca come solo effetto
quello di trasferire in modo continuo calore da un
corpo più freddo a un corpo più caldo.
Termostato caldo Tc
Clausius Rudolph Julius. Fisico tedesco Koslin
1822 – Bonn 1888
Si occupò principalmente di termodinamica,
formulò il II principio della termodinamica e
introdusse il concetto di entropia.
Qc
Macchina
frigorigena
Qf
Termostato freddo Tf
La macchina frigorigena è una macchina che toglie calore a un corpo
freddo e lo cede a un corpo più caldo utilizzando energia.
Termostato caldo Tc
Qc
Macchina
frigorigena
Energia
Qf
Termostato freddo Tf
Coefficiente di effetto frigorigeno
generalmente
ε =5
o 6
ε=
Tf
Qf
≤ −
W
Tc − T f
Sadi
SadiCarnot
CarnotParigi
Parigi1796
1796––1832.
1832.Figlio
FigliodidiLazare
Lazare
Carnot
Carnot(teorema
(teoremadiditrigonometria)
trigonometria)
Ingegnere
Ingegnereinteressato
interessatoalalmiglioramento.delle
miglioramento.delle
macchine
macchineaavapore,
vapore,ne
nestudiò
studiòil ilrendimento
rendimentomassimo
massimo
descrivendo
un
ciclo
ideale
per
le
macchine
termiche.
descrivendo un ciclo ideale per le macchine termiche.
6. Ciclo di Carnot
Sembra dunque che il fatto che una macchina abbia rendimento < 1
non sia dovuto solo a limitazioni tecniche della macchina;
W
η
=
<1
la limitazione principale sembra essere dovuta proprio alla natura.
Pressione
Qc
Per capire il limite teorico del rendimento di una
macchina studiamo il comportamento di una macchina
ideale rappresentata dal ciclo di Carnot.
A
A – B isotermica
B – C adiabatica
B
C – D isotermica
D – A adiabatica
D
C
volume
Pression
e
A
B
D
C
volume
Tc = costante
Espans Isotermica
A
B
Tf
--à
Tc
Tc
--à
Tf
Espans. Adiabatica
B
C
Compres Adiabatica
D
A
Tf = costante
Compres Isotermica
C
D
Il ciclo di Carnot
Pression
e
Ciclo di Carnot - Calcolo del Lavoro
A
B
D
C
volume
Trasformazione A à B
TA = TB ⇒
Espansione Isotermica
UA = UB ⇒ ∆U = UB − UA = 0
allora
∆U = Qc − WAB ⇒
Qc = WAB
con WAB > 0, Qc > 0
nel tratto Aà B Tutto il calore si trasforma in lavoro
Pression
e
Ciclo di Carnot - Calcolo del Lavoro
A
B
D
C
volume
Trasformazione B à C
Espansione Adiabatica
Q = 0 ⇒ allora
∆U = Qc − WBC ⇒ ∆U = − WBC ⇒ Uc − UB + WBC = 0
⇒
WBC = UB − Uc > 0
Osserviamo che UB − Uc > 0
⇒ UB > Uc
⇒ TB > Tc
nel tratto Bà C Il gas compie lavoro a spese dell’energia interna e
si raffredda
TC = T D ⇒
allora
Compressione Isotermica
UC = UD ⇒ ∆U = UD − UC = 0
Pression
e
Trasformazione C à D
A
∆U = Q’f − WCD ⇒ Q’f = WCD
con WCD < 0, Q’f < 0
ponendo
Qf = − Q’f > 0
B
D
C
volume
avremo che
WCD = − Qf
nel tratto Cà D
Il lavoro che il gas riceve dall’ambiente si trasforma in calore che
viene ceduto all’ambiente
Pression
e
Trasformazione D à A
A
Compressione Adiabatica
Q=0
⇒
B
allora
∆U = Q − WDA ⇒ ∆U = − WDA
UA − UD + WDA = 0
Osserviamo che
D
⇒
⇒ WDA = UD − UA < 0
UD − UA < 0 ⇒ UA > UD ⇒ TA > TD
nel tratto Dà A
Il lavoro che l’ambiente compie sul gas produce aumento
dell’energia interna e il gas si riscalda e ritorna allo stato iniziale A
C
volume
Pression
e
Lavoro del ciclo
Wciclo = WAB +WBC + WCD + WDA =
A
= Qc + UB − Uc − Qf + UD − UA =
B
D
C
Q c − Qf
quindi il rendimento della macchina è:
Q
W
η = ciclo = 1− f < 1
volume
Qc
Qc
e tenendo conto che
il rendimento della macchina di Carnot,
“Rendimento di Carnot" è :
Qf T f
=
Qc Tc
T f Tc − T f
η c = 1−
=
<1
Tc
T
c
Quindi il rendimento dipende soltanto dalle temperature dei due termostati
Si dice “rendimento del secondo principio” di una macchina reale
η sp =
Rendimento reale
Rendimento di Carnot
Un altro enunciato del II principio – Il teorema di Carnot
Il teorema di Carnot
1- Tutte le macchine reversibili che lavorano tra le stesse
temperature hanno lo stesso rendimento
2-
Nessuna macchina irreversibile può avere un rendimento
superiore a quello di una macchina reversibile che lavora
tra le stesse temperature.
8. Un ultimo aspetto del II Principio: L’ Entropia
Il secondo principio afferma che le trasformazioni spontanee
avvengono solo in un verso.
• energia meccanica
calore,
• il caffè bollente si raffredda,
•
Mettendo a contatto due corpi, uno caldo e l’altro freddo, il calore
fluisce sempre dal corpo caldo al freddo.
Esistono altre trasformazione irreversibili: un vetro che va in
frantumi, il mescolamento di due sostanze diverse, ecc…….
E’ proprio vero che i fenomeni spontanei avvengono solo in un verso?
È possibile che sia proprio così?
Che cosa vuol dire?
Consideriamo il caffè che si raffredda:
1-
Caffè caldo: l’energia termica è concentrata nel volume della tazzina,
Stato di maggiore ordine
2-
Caffè raffreddato: l’energia termica si è dispersa in tutta la stanza,
Stato di maggiore disordine
Consideriamo due gas che si mescolano:
Stato iniziale A:
i due gas sono separati
– Stato di maggior ordine
Azoto
Stato finale B:
Ossigeno
i due gas sono mescolati
– Stato di maggior disordine
Azoto
Ossigeno
Ossigeno
Azoto
Quindi in tutti i processi irreversibili (i processi spontanei sono
sempre in qualche misura irreversibili) il sistema passa da uno
stato più ordinato a uno stato di maggiore disordine.
Lord Kelvin ne concluse che tutti i moti finiranno per l’arrestarsi e, a causa
degli scambi di calore, tutte le temperature si uguaglieranno, ciò porterà
alla “morte termica” dell’universo.
L’Entropia
(e disordine)
Quando un sistema passa da uno Stato A ad uno Stato B (in modo
reversibile) la variazione d’entropia è data dal rapporto tra il calore
scambiato e la temperatura alla quale viene scambiato.
∆S = Qisoterma
Tisoterma
J 
 
K
L'entropia S è una funzione termodinamica di stato che misura la
quantità di cambiamento di un sistema ed anche il suo disordine.
Essendo variabile di stato il suo valore dipende solo dallo stato in cui
si trova il sistema e non dal modo in cui è pervenuto.
Analogamente la variazione d’entropia ∆S dipende solo dagli stati
iniziale e finale del sistema. Per cui se una trasformazione non è
reversibile possiamo calcolarne la variazione d’entropia mediante
una trasformazione reversibile equivalente, avente cioè gli stessi
stati iniziale e finale.
∆S = Qisoterma= SB −SA
Tisoterma
(∆S rappresenta la quantità di calore che viene scambiata per grado
kelvin)
Se il calore viene fornito al sistema Q > 0 l’entropia del sistema
aumenta ∆Ssistema > 0.
Q>0
SISTEMA
Se il calore viene sottratto al sistema Q < 0 l’entropia del sistema
diminuisce ∆Ssistema < 0.
Q<0
SISTEMA
Esempio 1 - Il passaggio di calore da un corpo caldo ad uno freddo è un
processo spontaneo irreversibile in cui si verifica un aumento dell’entropia
dell’universo e un aumento del disordine.
Termostato caldo Tc
Tc = 576 K
Q = 1050 J
Tf = 305 K
Variazione d’entropia termostato caldo
Q
∆SC =
Termostato freddo Tf
QC −1050
=
= −1,82 J / K
TC
576
Variazione d’entropia termostato freddo
∆S F =
QF 1050
=
= +3,44 J / K
TF
305
Variazione d’entropia dell’universo
∆ SU = ∆ S C + ∆ S F = 3, 44 + ( −1,82 ) = + 1,62 > 0
L’entropia dell’universo è aumentata.
Esempio 2 Anche nell’esempio seguente si ha un processo spontaneo
irreversibile: il gas contenuto nel vano di sinistra si espande liberamente fino
ad occupare tutto il volume disponibile.
Nella fig. il dispositivo è costituito da due recipienti collegati tra loro e isolati
dall’esterno da materiale adiabatico. Quando viene aperto il rubinetto il gas si espande
liberamente in condizioni adiabatiche.
Stato iniziale A
pA, VA, TA
Stato finale B
pB = ½ pA;
VB = 2 VA, TB =TA=T
Gas
Vuoto
Gas
Gas
Vuoto
Trasformazione A à B
G
as
Q = 0; W = 0 (espansione libera)
= Q − W = 0 ⇒ ∆U = 0 ⇒
TA = TB
La trasformazione A à B
isoterma in figura
∆U
è equivalente all’espansione
A
B
In cui W = Q = ∆Q = nRT lnVB/VA = nRT ln2 > 0
∆Q nRT ln 2
∆S =
=
= nRln 2 > 0
T
T
Gas
Sistemi Viventi ed Entropia.
I sistemi viventi, come sappiamo, sono in grado di organizzare
materiale grezzo e produrre strutture organizzate anche molto
complesse:
L’embrione utilizza le sostanze nutritive per svilupparsi in un
individuo completo.
Le piante utilizzano l’energia del sole, l’anidride carbonica e i
nutrienti contenuti nel terreno per svilupparsi in strutture complesse.
Negli esempi precedenti e in tutti i sistemi viventi si osserva un
aumento dell’ordine e quindi una diminuzione dell’entropia.
Tuttavia, se teniamo conto che gli organismi viventi per vivere e
svilupparsi devono utilizzare energia, vedremo che anche in questi
casi l’entropia totale del Sistema + Ambiente, cioè l’entropia
dell’universo, aumenta sempre.
Ludwig Boltzmann approfondì lo studio della teoria
dell’irreversibilità giungendo alla conclusione che essa non è una legge
assoluta della fisica, ma una legge statistica;
In ogni processo spontaneo il sistema passa da uno stato meno
probabile ad uno con maggiore probabilità.
L’equazione dell’entropia di Boltzmann, permette di
calcolare l’entropia di uno stato del sistema in relazione
alla sua probabilità:
S = k lnW
k = 1,38 10−23 J/K costante di Boltzmann
W = Molteplicità della configurazione, numero di permutazioni
della configurazione.
Calcoliamo l’Entropia delle configurazioni delle 4 molecole
S
1°- SSSS
D
molteplicità W = 1
S1 = k ln 1 = 0 J/K
S
D
2°– SSSD molteplicità W = 4
S2 = k ln 4 = 1,91 10-23 J/K
S
D
3°– SSDD molteplicità W = 6
S3 = k ln 6= 2,47 10-23
J/K
S
4°– SDDD molteplicità W = 4
S4 = k ln 4 = 1,91 10-23 J/K
S
5°– DDDD
molteplicità W = 1
S5 = k ln 1 = 0 J/K
D
D
Poiché le distribuzioni sono tutte equiprobabili, nel caso delle 4
molecole, considerato un intervallo di tempo di 16 secondi,
possiamo dire che mediamente (in termini statistici) il sistema si
troverà nello stato SSSS per 1 sec, nello stato SSSD per 4 sec,
nello stato SSDD per 6 sec, ……
Quindi le distribuzioni SSSS o DDDD non sono impossibili, sono
solo meno probabili.
Ma nel caso di 100 molecole il sistema si troverà nello stato “tutte le
molecole nel vano di sinistra”, probabilità (1/2)100 = 7,9 10–31,
mediamente (in senso statistico) per 1 secondo in un intervallo di
tempo della durata di circa 1,27 1030 secondi circa 9,65 1014 miliardi
di anni.
Allora il II principio non dice che certi eventi sono impossibili, ma
solo estremamente improbabili.
Un ultimo enunciato del II principio – Entropia
Una trasformazione irreversibile, che inizia e termina in stati di
equilibrio, si svolge sempre nel verso in cui si verifica un aumento
dell’entropia del Sistema + Ambiente
∆S universo = ∆Ssistema + ∆Sambiente > 0
Se la trasformazione è reversibile
∆S universo = 0
ENTROPIA DELL’UNIVERSO
(non diminuisce mai)
Facciamo alcune utili considerazioni sull’entropia delle
trasformazioni termodinamiche reversibili e irreversibili:
• In un CICLO Reversibile o Irreversibile
La variazione d’entropia del SISTEMA è sempre ZERO.
Pressione
Pressione
∆S sistema = ∆Sciclo = Sf − Si = 0
A
A
B volume
∆Sciclo = SA − SA = 0
Bvolume
∆Sciclo = SA − SA = 0
• In un CICLO o in una TRASFORMAZIONE
REVERSIBILI
La variazione d’entropia dell’ UNIVERSO è sempre ZERO.
Pressione
Pressione
∆S universo = ∆Ssistema + ∆Sambiente = 0
A
A
B
B volume
∆ Ssist = 0;
∆SU = 0
volume
∆ Ssist > 0;
∆SU = 0
• In un CICLO o in una TRASFORMAZIONE
IRREVERSIBILI
La variazione d’entropia dell’ UNIVERSO è sempre
maggiore di ZERO.
Pressione
Pressione
∆S universo = ∆Ssistema + ∆Sambiente > 0
A
A
B
B volume
∆ Ssist = 0;
∆SU > 0
volume
∆ Ssist > 0;
∆SU > 0
Oss. In un processo IRREVERSIBILE la quantità di
energia perduta viene trasformata in modo da non poter
essere più utilizzata
ed è data dall’equazione seguente:
Wperduto = Tf •∆Suniverso = Q(1− Tf/Tc)
Il 3° Principio della Termodinamica
E’ impossibile abbassare la temperatura di un corpo fino allo zero
assoluto mediante un numero finito di passi.
Sperimentalmente è sempre possibile avvicinarsi sempre più allo
zero assoluto, ma è impossibile raggiungerlo.