Universita’ degli Studi dell’Insubria Corsi di Laurea in Scienze Chimiche e Chimica Industriale Termodinamica Chimica G = H -TS Energia di Gibbs [email protected] http://www.unico.it/~dario/thermo Energia di Gibbs Processi Spontanei Un processo è spontaneo se l’entropia dell’Universo aumenta. DStot = DSsis + DSamb 0 É scomodo dover esplicitamente tener conto di quello che succede nell’Universo. Preferiremmo concentrarci solo sul sistema. Se lavoriamo a pressione costante o a volume costante, è facile tener conto dei contributi entropici dell’ambiente. © Dario Bressanini Processi spontanei Partiamo dalla disuguaglianza di Clausius dq Processo dS 0 spontaneo T Consideriamo la pressione costante: dq = dH dH dS 0 T dH TdS 0 Esprime il criterio di spontaneità solo in base a funzioni di stato del sistema. © Dario Bressanini Energia di Gibbs dH – T dS 0 Se S = costante, H viene minimizzato Se H = costante, S viene massimizzato Introduciamo la funzione G=H–TS G = energia di Gibbs (un tempo ‘energia libera’) A temperatura costante dG = dH – T dS – S dT = dH – T dS © Dario Bressanini Energia di Gibbs Se il sistema cambia a T e p costanti, dGp,T = dH – T dS 0 All’equilibrio dGp,T = 0 Per una variazione finita, a T e p costanti DGp,T = DH – T DS Se il processo è spontaneo DG < 0 All’equilibrio DG = 0 © Dario Bressanini Energia di Gibbs e Universo Se p e T sono costanti DG < 0 © Dario Bressanini DSuniverso > 0 Energia di Gibbs e Universo Attenzione!! Se p e T NON sono costanti, G e’ ugualmente definita, ma DG NON rappresenta piu’ la variazione di entropia dell’Universo © Dario Bressanini Energia di Helmholtz A volume costante: dq = dU dU dS 0 T dU TdS 0 Introduciamo la funzione di Helmoltz A=U–TS A temperatura costante dA = dU – T dS – S dT = dU – T dS © Dario Bressanini Le Proprieta’ di G Giochiamo un poco con i differenziali dG = dH – TdS - SdT dH = dU + pdV + Vdp dG = dU + pdV + Vdp – TdS - SdT dU = TdS - pdV dG = TdS - pdV + pdV + Vdp – TdS - SdT dG = Vdp - SdT © Dario Bressanini Le Proprieta’ di G dG = Vdp - SdT Questa equazione suggerisce di considerare G una funzione di p e T: G=G(p,T) Questo spiega la sua importanza in Chimica G G dG dT dP T P P T G S T P © Dario Bressanini G V P T Relazione di Maxwell dG = Vdp - SdT Poichè dG è un differenziale esatto, possiamo ricavare un’altra relazione di Maxwell S V T P p T © Dario Bressanini Dipendenza dalla Pressione Dipendenza di G dalla pressione La variazione di G rispetto a p è data da © Dario Bressanini (G/ p)T = V Un grafico qualitativo si ottiene considerando che a T costante, Liquidi e Solidi non variano molto il loro volume con la pressione, a differenza dei Gas. Variazione Isoterma Calcoliamo la variazione di energia di Gibbs durante una trasformazione isoterma G V p T dG Vdp T cost Vf G ( p f ) G ( pi ) Vdp Vi © Dario Bressanini Variazione Isoterma di un Gas ideale Per un gas ideale V = nRT/p Vf G ( p f ) G ( pi ) Vdp Vi pf nRT G ( pi ) dp p pi © Dario Bressanini pf G ( p f ) G ( pi ) nRT ln pi Variazione Isoterma di un Gas ideale Possiamo considerare la pressione di riferimento p° = 1 bar pf G( p f ) G( p) nRT ln p G( p) G nRT ln p P deve venire misurata in bar © Dario Bressanini Liquidi e Solidi Solidi e Liquidi sono sostanzialmente incomprimibili, quindi in prima approssimazione pf DG Vdp V ( p f pi ) VDp pi © Dario Bressanini Dipendenza dalla Temperatura Dipendenza di G da T La variazione di G rispetto a T è data da © Dario Bressanini T)p = -S Un grafico qualitativo si ottiene considerando che (G/ S(gas) >> S(liquido) > S(solido) La fase più stabile è quella con minor G. Dipendenza di G da T A pressione costante G dG dT SdT T P G DG dT SdT T P T1 T1 T2 © Dario Bressanini T2 Dipendenza di DG da T Il DG di un processo può essere calcolato a varie temperature T2 DG T2 DG T1 DS dT T1 DGT2 DGT1 DS T2 T1 © Dario Bressanini Lavoro ed energia di Gibbs Lavoro ed Energia di Gibbs L’Energia di Gibbs rappresenta il massimo lavoro non di espansione ottenbile da un processo (importante per le batterie): dH = dU + d(pV) = dq + dw + d(pV) Per un cambiamento reversibile dw = dwrev dq = TdS dG = TdS + dwrev + d(pV) –TdS = dwrev + pdV + Vdp dwrev e’ lavoro di espansione –pdV piu’ altro lavoro dwa dG = –pdV + dwa + pdV + Vdp = dwa + Vdp A pressione costante dG = dwa Poiche’ il processo e’ reversibile, il lavoro e’ massimo © Dario Bressanini Lavoro ed Energia di Gibbs © Dario Bressanini Variazione di Energia di Gibbs DG = DH DH = DG + TDS Energia Disponibile Benzina Energia Interna Legami Chimici © Dario Bressanini - T D S oppure Lavoro utilizzabile Ruote che girano, batteria che si carica, luci… Energia Dispersa Calore disperso nell’ambiente, che aumenta l’entropia dell’univrso Efficienza L’efficienza e’ il rapporto tra l’energia fornita e il lavoro estratto. Apparecchio Batterie a secco Caldaia domestica Razzo a combustibile liquido Motore di automobile Lampada a fluorescenza Cella solare Lampada ad incandescenza © Dario Bressanini efficienza 90% 65% 50% < 30% 20% ~10 % 5% DG indicatore di efficienza Per un processo non spontaneo, DG fornisce informazioni sulla minima quantita’ di lavoro necessaria per far avvenire il processo © Dario Bressanini Non e’ raggiungibile il 100% di efficienza Crisi Energetica? Se l’energia totale si conserva, perche’ abbiamo un “problema energetico” ? Tutta (o quasi) l’energia che usiamo arriva da un’unica fonte: il Sole Idrodinamica Eolica Combustibili fossili … Il problema e’ la degradazione delle forme di energia. A mano a mano che trasformiamo l’energia, diminuiamo la parte utile. Stiamo rapidamente consumando l’energia immagazzinata nei combustibili fossili. © Dario Bressanini DG Importanza di DG DG Fornisce la direzione del processo © Dario Bressanini Fornisce il massimo lavoro utilizzabile di un processo Energia di Gibbs e Spontaneità Poichè G = H – TS La variazione finita di G è A Temperatura e pressione costante DG = DH- D(TS) DG = DH- TDS DG < 0 - processo spontaneo DG > 0 - processo non spontaneo (spontaneo nella direzione opposta) DG = 0 - sistema in equilibrio © Dario Bressanini Contributi al DG DG = DH - TDS Distinguiamo i due contributi alla variazione di energia di Gibbs Entropico (DS) Enthalpico (DH) . DH DS DG - + - Processo spontaneo per ogni T - - ? Processo spontaneo a basse T + + ? Processo spontaneo ad alte T + - + Processo mai spontaneo per qualsiasi T © Dario Bressanini Mistero DH0f (C, grafite) = 0 DH0f (C, diamante) = 1.9 kJ/mol Watson: Dottor Holmes, posso sapere se La Grafite e’ piu’ stabile del Diamante? Sherlock Holmes: Calcolando il DG, caro Watson !!! © Dario Bressanini Elementare Watson Calcoliamo il DGm(298 K) per la trasformazione da grafite in diamante Cgrafite Cdiamante DrHo(kJ/mol) DrGo = DrHo - TDrSo Som(J/mol K) Cgrafite 0 5.740 Cdiamante 1.895 2.377 DrGo = ((1895-0) – 298.15 (2.377 – 5.740))J mol-1 = 2.898 kJ mol-1 Quindi la trasformazione diamante grafite e’ spontanea © Dario Bressanini DrG° Energia di Gibbs standard di Reazione Le entalpie e le entropie molari standard si possono combinare per ottenere le energie di Gibbs molari standard DGo = DHo - TDSo Ad esempio, per una reazione chimica DrGo = DrHo - TDrSo © Dario Bressanini DGo DGo si riferisce a condizioni standard (1 bar) DG condizioni non standard DG (e DGo ) non si puo’ misurare direttamente. Solo DH viene misurato. Come per l’Entalpia, non esiste una scala assoluta di G © Dario Bressanini DS° DH° < 0 DS° > 0 DH° > 0 DS° > 0 Spontanea a ogni temperatura Spontanea ad alta temperatura DH° < 0 DS° < 0 DH° > 0 DS° < 0 Spontanea a bassa temperatura Mai spontanea © Dario Bressanini Esotermica Endotermica DH° Energia di Gibbs standard di Formazione Il DrGo si puo’ esprimere in funzione delle energie di Gibbs di formazione D r G nD f Gprodotti mD f Greagenti DfG e’ l’energia di Gibbs standard per la formazione di un composto a partire dagli elementi nei loro stati standard © Dario Bressanini Esercizio Calcolare il DGo per la combustione dell’Acetilene C2H2(g) + 5/2 O2(g) 2 CO2(g) + H2O(g) Dalle entalpie standard di formazione: DrHo = -1238 kJ Dalle entropie molari standard: DrSo = - 0.0974 kJ/K Calcolo DrGo = DrHo - TDrSo DrGo = -1238 kJ - (298 K)(-0.0974 kJ/K) = -1209 kJ La reazione e’ spontanea, nonostante il valore negativo di DrSo. © Dario Bressanini Esercizio Quando la reazione e’ spontanea ? 2 Fe2O3(s) + 3 C(s) 4 Fe(s) + 3 CO2(g) DrHo = +467.9 kJ DrSo = +560.3 J/K A 298 K DrGo = 467.9 kJ - (298K)(0.560kJ/K) = +300.8 kJ La reazione e’ sfavorita Calcoliamo quando DrGo = 0 = DrHo - TDrSo T = DrHo/DrSo ~ 468kJ/0.56kJ/K = 836 K o 563oC © Dario Bressanini DG e Temperatura Ca(s) + Cl2(g) CaCl2(s) DH = 59.8 kJ DS = 273 J/K DG = DH TDS La reazione e’ Spontanea a basse T: DG < 0 Non spontanea a alte T, l’entropia prende il sopravvento Quando DG = 0 la reazione non e’ spontanea in entrambe le direzioni. Abbiamo una situazione di equilibrio! 59.8 kJ T(0.273kJ/K) = 0 T = 219K or 53oC La reazione e’ spontanea per T < 53oC © Dario Bressanini DG e Temperatura C6H12O6(s) 2 C2H5OH(l) + 2 CO2(g) DH = 70 kJ DS = +780J/K 0 = 70kJ T(+0.78J/K) T = 90K La reazione e’ spontanea a tutte le temperature. Servirebbe una temperatura IMPOSSIBILE per rendere spontanea la reazione inversa © Dario Bressanini Equazione di Gibbs-Helmholtz Dipendenza di G dalla Temperatura G S T p Partiamo dall’equazione Riscriviamo l’entropia in funzione di G e H H G G H TS S T Calcoliamo ora H G G T T p G T T p G 1 G G 1 G G 2 T T p T T p T T T p T © Dario Bressanini Equazione di Gibbs-Helmholtz T 1 G G G T p T T p T Sostituiamo la relazione H G G T T p G H 2 T T T p La variazione di G/T con T e’ piu’ semplice della variazione di G con T © Dario Bressanini Bio Vita e reazioni Spontanee Negli esseri viventi avvengono milioni di reazioni non spontanee. Come e’ possibile? ATP © Dario Bressanini ATP = AdenosinTrifosfato L’ATP e’ la banca di energia del corpo umano. La reazione di Idrolisi ATP ADP e’ spontanea. Quando il corpo ha bisogno di energia (per flettere un muscolo, sintetizzare una proteina, etc…) accoppia una idrolisi dell ATP con la reazione desiderata (e un enzima opportuno) Il metabolismo del Glucosio ritrasforma ADP (AdenosinDifosfato) in ATP, che viene immagazzinato © Dario Bressanini © Dario Bressanini ATP e reazioni BioChimiche Accoppiamento di reazioni non spontanee con l’idrolisi dell’ATP © Dario Bressanini ATP e Energia di Gibbs –CH2CH2COOH + NH3 –CH2CH2CONH2 + H2O La reazione tra acido glutammico (un aminoacido) e l’ammoniaca non e’ spontanea (DG > 0) Nella cellula questa reazione avviene grazie all’accoppiamento con l’idrolisi dell’ATP che fornisce l’energia libera di Gibbs necessaria © Dario Bressanini ATP e Energia di Gibbs Reazione non spontanea Fosforilazione dell’acido glutammico. Reazione spontanea L’energia del gruppo fosfato viene usata per far avvenire la reazione La reazione globale ha un DG negativo, e quindi e’ spontanea © Dario Bressanini ATP e Termodinamica Ilya Prigogine (Premio Nobel 1977) Termodinamica del Non Equilibrio. ATP Peter Mitchell (Premio Nobel 1978) Meccanismi di formazione dell’ATP © Dario Bressanini Potenziale Chimico Il Potenziale Chimico Cominciamo a considerare anche il numero di moli una quantita’ variabile. Definiamo il potenziale chimico G n T , p Dato che G = n Gm, per una sostanza pura (nGm ) Gm n T , p © Dario Bressanini Il Potenziale Chimico Per una sostanza pura = Gm Definiamo il potenziale chimico standard °= (T, 1 bar) Per un gas ideale possiamo scrivere RT ln p Ricordatevi che p si intende p/1 bar © Dario Bressanini The End Standard Gibbs Energy of Formation The standard Gibbs energy of formation is the standard reaction Gibbs energy of formation of a compound from its elements in their reference states. Just like enthalpy, the standard Gibbs energy of a reaction can be found using the standard for products and reactants. D G θ Gibbs νenergy D G θ of formation νD G θ r products f m f m reactants D r H θ TD r S θ What is DrG298 for the combustion of methane? CH4 (g) +2O2 (g) 2H2O (l) + CO2 (g) D r G θ D f G θ CO2 ( g ) 2D f G θ H 2O (l ) D f G θ CH4 ( g ) 2D f G θ O 2 ( g ) 394 2237 50.7 20 kJ mol-1 817 kJ mol-1 © Dario Bressanini The Gibbs Energy Change (cont’d) For the methane combustion reaction 1 CH4(g) + 2 O2(g) 1 CO2(g) + 2 H2O(l) DrG = np DfG (products) - nr DfG (reactants) = 2 DfG [H2O(l)] + 1 DfG [CO2(g)] - (7/2 DfG [O2(g)] + 1 DfG [CH4(g)] ) © Dario Bressanini Free Energy Change, DG, and Spontaneity Example 15-16: Calculate DGo298 for the reaction in Example 15-8. Use appendix K. C 3 H 8 g + 5 O 2 g 3 CO 2 g + 4 H 2 O l you do it © Dario Bressanini The Temperature Dependence of Spontaneity Example 15-17: Calculate DSo298 for the following reaction. In example 15-8, we found that DHo298= -2219.9 kJ, and in Example 15-16 we found that DGo298= -2108.5 kJ. C3H8g +5 O2g 3 CO2g +4 H2Ol © Dario Bressanini The Temperature Dependence of Spontaneity Example 15-17: Calculate DSo298 for the following reaction. In example 15-8, we found that DHo298= -2219.9 kJ, and in Example 15-16 we found that DGo298= -2108.5 kJ. C3H8g +5 O2g 3 CO2g +4 H2Ol DG DH TDS o o o TDS DH DG o © Dario Bressanini o o The Temperature Dependence of Spontaneity C3H8g + 5 O2g 3 CO2g + 4 H2Ol DG DH TDS o o o TDS DH DG o o DH DG DS T 22199 . (21085 . ) kJ 298 K 0374 . kJ K or - 374 J K o o © Dario Bressanini o o The Temperature Dependence of Spontaneity DSo298 = -374 J/K which indicates that the disorder of the system decreases . For the reverse reaction, 3 CO2(g) + 4 H2O(g) C3H8(g) + 5 O2(g) DSo298 = +374 J/K which indicates that the disorder of the system increases . © Dario Bressanini The Temperature Dependence of Spontaneity Example 15-18: Use thermodynamic data to estimate the normal boiling point of water. H 2 O l H 2 O g equilibrium at BP DG = 0 DG = DH - TDS or DH = TDS © Dario Bressanini DH T= DS The Temperature Dependence of Spontaneity assume DH@ BP DH o o DH H 2O(g) o DH 298 o DH H 2O( l ) DH 2418 . ( 2858 . ) o DH 44.0 kJ@25 C o © Dario Bressanini o J K The Temperature Dependence of Spontaneity assume DS@ BP DS o o SH 2O(g) o DS298 o S H 2O( l ) DS 188.7 69.91 o DS o J 118.8 © Dario Bressanini K or J K kJ - 0.1188 K The Temperature Dependence of Spontaneity DH DH 44.0 kJ T= o 370 K kJ DS DS 0.1188 K o o 370 K-273 K=97 C © Dario Bressanini Calculating Go from Enthalpy and Entropy Values–I Problem: Potassium chlorate, one of the common oxidizing agents in explosives, fireworks, and matchheads, undergoes a solid-state redox reaction when heated, in which the oxidation number of Cl in the reactant is higher in one of the products and lower in the other (disproportionation): 4 KClO 3 KClO + KCl 3 (s) 4 (s) (s) Use Hof and So values to calculate Gosys ( Gorxn) at 25oC for this reaction. Plan: To solve for Go, use Hof values to calculate Horxn( Hosys), use So values to calculate Sorxn( Sosys), and apply Equation 20.6. Solution: Calculating Hosys from Hof values (with Equation 6.8): Hosys = Horxn = ∑m Hof(products) ∑n Hof(reactants) = [3 mol KClO4 ( Hof of KClO4) + 1 mol KCl ( o of KClO )] [4 mol KClO ( H 3 f 3 © Dario Bressanini Hof of KCl)] Calculating Go from Enthalpy and Entropy Values–II Hosys = [3 mol (-432.8 kJ/mol) + 1 mol (-436.7 kJ/mol)] - [4 mol (-397.7 kJ/mol)] = -144 kJ Calculating Sosys = Sosys from So values (with Equation 20.3): Sorxn = [3 mol KClO4 ( So of KClO4) + 1 mol KCl ( So of KCl)] - [4 mol KClO3 (So of KClO3)] = [3 mol (151.0 J/mol K) + 1 mol (82.6 J/mol K)] - [4 mol (143.1 J/mol K)] = - 36.8 J/K . Calculating Gosys = . . Gosys at 298 K: Hosys - T Sosys = -144 kJ - [(298 K)(-36.8 J/K)(1kJ/1000 J)] The reaction is spontaneous which is o G sys = -133 kJ © Dario Bressanini consistent with Go < 0 Effect of Temperature on Reaction Spontaneity The temperature at which a reaction occurs influences the magnitude of the T S term. By scrutinizing the signs of H and S, we can predict the effect of temperature on the sign of G and thus on the spontaneity of a process at any temperature. Temperature-independent cases (opposite signs) 1. Reaction is spontaneous at all temperatures: Ho < 0, So > 0 2 H2O2 (l) 2 H2O(l) + O2 (g) Ho = -196 kJ and So = 125 J/K 2. Reaction is nonspontaneous at all temperatures: Ho > 0, So < 0 3 O2 (g) 2 O3 (g) Ho = 286 kJ and So = - 137 J/K Temperature-dependent cases (same signs) 3. Reaction is spontaneous at higher temperature: Ho > 0 and So > 0 2 N2O(g) + O2 (g) 4 NO(g) Ho = 197.1 kJ and So = 198.2 J/K 4. Reaction is spontaneous at lower temperature: Ho < 0 and So < 0 o = - 822.2 kJ and o = - 181.7 J/K Dario Bressanini 2© Na + Cl 2 NaCl H S (s) 2 (g) (s) Determining the Effect of Temperature on Go–I Problem: An important reaction in the production of sulfuric acid is the oxidation of SO2 (g) to SO3 (g): 2 SO +O 2 SO 2 (g) 2 (g) 3 (g) At 298 K, Go = -141.6 kJ; Ho = -198.4 kJ; and So = -187.9 J/K. (a) Use the data to decide if this reaction is spontaneous at 25oC and how Go will change with increasing T. (b) Assuming Ho and So are constant with T, is the reaction spontaneous at 900.oC? Plan: (a) We examine the sign of Go to see if the reaction is spontaneous and the signs of Ho and So to see the effect of T. (b) We use Equation 20.6 to calculate Go from the given Ho and So at the higher T (in K). Solution: Continued on next slide. © Dario Bressanini Determining the Effect of Temperature on Go–II Solution: (a) Since Go < 0, the reaction is spontaneous at 298 K: a mixture of SO2 (g), O2 (g), and SO3 (g) in their standard states (1 atm) will spontaneously yield more SO3 (g). With So < 0, the term -T So > 0 and becomes more positive at higher T. Therefore, Go will be less negative, and the reaction less spontaneous, with increasing T. (b) Calculating Go = Ho - T = 22.0 kJ Since Go at 900.oC (T= 273 + 900. = 1173 K): So = - 198.4 kJ - [(1173 K)(-187.9 J/K)(1 kJ/1000 J)] Go > 0, the reaction is nonspontaneous at higher T. © Dario Bressanini Calculating G at Nonstandard Conditions–I Problem: The oxidation of SO2, which we discussed earlier, is too slow 2 SO2 (g) + O2 (g) 2 SO3 (g) at 298 K to be useful in the manufacture of sulfuric acid. To overcome this low rate, the process is conducted at an elevated temperature. (a) Calculate K at 298 K and at 973 K. Go298 = -141.6 kJ/mol of reaction as written; using Ho and So values at 973 K, Go973 = -12.12 kJ/mol of reaction as written. (b) In experiments to determine the effect of temperature on reaction spontaneity, sealed containers are filled with 0.500 atm SO2, 0.0100 atm O2, and 0.100 atm SO3 and kept at 25oC and at 700oC. In which direction, if any, will the reaction proceed to reach equilibrium at each temperature? (c) Calculate G for the system in part (b) at each temperature. Plan: (a) We know Go, T, and R, so we can calculate the K’s from Equation 12.10. Dario Bressanini (b)©Calculate Q, and compare it with each K from part (a). Calculating G at Nonstandard Conditions–II Plan : Continued (c) Since these are not standard-state pressures, we calculate G at each T from Equation 20.11 with the values of Go (given) and Q [found in part (b)]. Solution: (a) Calculating K at the two temperatures: Go = -RT ln K so K = e-( G/RT) At 298 K, the exponent is 1000 J -141.6 kJ/mol x 1 kJ - ( Go/RT) = = 57.2 8.31 J/mol K x 298 K K = e-( G/RT) = e57.2 = 7 x 1024 So At 973 K, the exponent is -12.12 kJ/mol x 1000 J 1 kJ - ( Go/RT) = = 1.50 8.31 J/mol K x 973 K . . © Dario Bressanini K = e-( G/RT) = e1.50 = 4.5 Calculating G at Nonstandard Conditions-III (b) Calculating the value of Q : 2 p2SO3 0.100 Q= 2 = = 4.00 2 p SO2 x pO2 0.500 x 0.0100 Since Q < K at both temperatures, the denominator will decrease and the numerator increase–more SO3 will form–until Q equals K. However, at 298 K, the reaction will go far to the right before reaching equilibrium, whereas at 973 K, it will move only slightly to the right. (c) Calculating G, the nonstandard free energy change, at 298 K and 973 K G298 = Go + RT ln Q = -141.6 kJ/mol + (8.31 J/mol K x 1 kJ x 298 K x ln 4.00) 1000 J = -138.2 kJ/mol . G973 = Go + RT ln Q = - 12.12 kJ/mol + (8.31 J/mol K x 1 kJ x 973 K x ln 4.00 1000 J © Dario Bressanini = - 0.90 kJ/mol . © Dario Bressanini Fig. 20.12 Calculating DGorxn for NH4NO3(s) EXAMPLE 2: NH4NO3(s) NH4NO3(aq) Is the dissolution of ammonium nitrate product-favored? If so, is it enthalpy- or entropy-driven? © Dario Bressanini 9_amnit.mov 20 m07vd1.mov DGorxn for NH4NO3(s) NH4NO3(aq) From tables of thermodynamic data we find DHorxn = +25.7 kJ DSorxn = +108.7 J/K or +0.1087 kJ/K DGorxn = +25.7 kJ - (298 K)(+0.1087 kJ/K) = -6.7 kJ Reaction is product-favored © Dario Bressanini o Calculating DGorxn DGorxn = DGfo (products) - DGfo (reactants) EXAMPLE 3: Combustion of carbon C(graphite) + O2(g) CO2(g) DGorxn = DGfo(CO2) - [DGfo(graph) + DGfo(O2)] DGorxn = -394.4 kJ - [ 0 + 0] Note that free energy of formation of an element in its standard state is 0. © Dario Bressanini o DGo for COUPLED CHEMICAL REACTIONS Reduction of iron oxide by CO is an example of using TWO reactions coupled to each other in order to drive a thermodynamically forbidden reaction: Fe2O3(s) 4 Fe(s) + 3/2 O2(g) DGorxn = +742 kJ with a thermodynamically allowed reaction: 3/2 C(s) + 3/2 O2 (g) 3/2 CO2(g) Overall : DGorxn = -592 kJ Fe2O3(s) + 3/2 C(s) 2 Fe(s) + 3/2 CO2(g) DGorxn= +301 kJ @ 25oC BUT DGorxn < 0 kJ for T > 563oC See Kotz, pp933-935 for analysis of the thermite reaction © Dario Bressanini Other examples of coupled reactions: Copper smelting Cu2S (s) 2 Cu (s) + S (s) Couple this with: S (s) + O2 (g) SO2 (s) Overall: DGorxn= +86.2 kJ (FORBIDDEN) DGorxn= -300.1 kJ Cu2S (s) + O2 (g) 2 Cu (s) + SO2 (s) DGorxn= +86.2 kJ + -300.1 kJ = -213.9 kJ (ALLOWED) Coupled reactions VERY COMMON in Biochemistry : e.g. all bio-synthesis driven by ATP ADP for which DHorxn = -20 kJ DSorxn = +34 J/K DGorxn = -30 kJ @ 37oC © Dario Bressanini Thermodynamics and Keq (2) 9_G_NO2.mov 20m09an1.mov © Dario Bressanini 2 NO2 N2O4 DGorxn = -4.8 kJ pure NO2 has DGrxn < 0. Reaction proceeds until DGrxn = 0 - the minimum in G(reaction) see graph. At this point, both N2O4 and NO2 are present, with more N2O4. This is a product-favored reaction. Thermodynamics and Keq (3) N2O4 2 NO2 DGorxn = +4.8 kJ 9_G_N2O4.mov 20m09an2.mov © Dario Bressanini pure N2O4 has DGrxn < 0. Reaction proceeds until DGrxn = 0 - the minimum in G(reaction) - see graph. At this point, both N2O4 and NO2 are present, with more NO2. This is a reactant-favored reaction. Thermodynamics and Keq (5) DGorxn = - RT lnK Calculate K for the reaction N2O4 2 NO2 DGorxn = +4.8 kJ DGorxn = +4800 J = - (8.31 J/K)(298 K) ln K 4800 J lnK = = - 1.94 (8.31 J/K)(298K) K = 0.14 When DGorxn > 0, then K < 1 - reactant favoured When DGorxn < 0, then K >1 - product favoured © Dario Bressanini Consider the synthesis of methanol: CO(g) + H2(g) CH3OH(l) Calculate DG at 25 oC for this reaction where CO(g) at 5.0 atm and H2(g) at 3.0 atm are converted to CH3OH(l) . Given: DGf (CH3OH(l)) DGf (CO(g)) DGf (H2(g)) −166 kJ −137 kJ 0 Cont’ We must use: DG = DG + RT ln(Q) DG DGf DGf DGf (CH3OH(l)) (CO(g)) (H2(g)) DG 166137029kJ Q= 1 PCO . P2H2 = 1 (5) . (3)2 = 2.2 x 10-2 DG = 29x 103 + (8.3145)(298) ln( 2.2 x 10-2) = − 38 kJ / mol The second law is the greatest good and the greatest bad on earth. © Dario Bressanini The good: Life is possible. We eat concentrated energy in the form of food, process that energy to synthesize complex biochemicals and run our organism, excreting diffused energy as body heat and less concentrated energy substances. We use concentrated energy fuels to gather all kinds of materials from all parts of the world and, without any energetic limitation, arrange them in ways that please us. We affect non-spontaneous reactions (pure metals from ores, synthesizing curative drugs from simple compounds, altering DNA). We make machines that make other machines, machines that © Dario Bressanini mow lawns, move mountains, and go to the moon. The bad: Life is always threatened. Every organic chemical of the 10,000 different kinds in our bodies is metastable, synthesized by a nonspontaneous reaction and kept from instant oxidation in air by activation energies. Living creatures are energy processing systems that cannot function unless biochemical cycles operate synchronically to use energy to oppose second law predictions. All of the biochemical systems that run our bodies are maintained and regulated by feedback subsystems, composed of complex substances that are synthesized internally by thermodynamically nonspontaneous reactions, affected by utilizing energy ultimately transferred from the metabolism of food. When these feedback subsystems fail energy can no longer be processed to carry out the many reactions we need for life that are contrary to the direction © Dario Bressanini predicted by the second law. GT,p S time Changes in entropy of an isolated system with time. with time until equilibrium is reached Entropy increases Change in the Gibbs free energy at constant temperature and pressure. Under these conditions G decreases during the course of a spontaneous change until equilibrium is reached. © Dario Bressanini Gibbs Free Energy © Dario Bressanini Chemical Potentials of the Ideal Gas Differentiating the chemical potential with temperature J Sm,J T P P Sm ,J T S m ,J T R ln P © Dario Bressanini The Standard Chemical Potential For P1 = P = 1 bar, we define the standard state chemical potential °= (T, 1bar) P (T) (T, 1 bar ) RT ln 1 bar © Dario Bressanini The Chemical Potential for Real Gases The fugacity (f) represents the chemical potential of a real gas. Define the fugacity coefficient =f/P For a real gas P (T) (T, 1 bar ) RT ln f © Dario Bressanini Obtaining Fugacity Coefficients Comparing the chemical potential of the real gas to the chemical potential of an ideal gas at the same pressure P RT ln P P real id RT ln f © Dario Bressanini Calculating Fugacity Coefficients The fugacity coefficients are obtained from the compression factors (Z) as shown below Z 1 RT ln dP P 0 P © Dario Bressanini Partial molar (molal) quantities If system is not simple, e.g. open system or mixtures, then for e.g. substances A and B V dV (T , P, nA , nB ) T P ,n A ,nB V V dP dnA dnB n n A T , P ,n B T , P ,n A ,nB V dT P T ,n B A (see lab manual, the five pages following error analysis) For constant T,P and nA (e.g. 1 kg water in expt 2) V dV dn nB T , P ,n B A Find V does not vary linearly with nB V Slope V V B Vm,B = n B T , P ,n A partial molar volume mB = moles solute / kg solvent © Dario Bressanini V dV (T , P, nA , nB ) T P ,n A ,nB V V dP dnA dnB n n A T , P ,n B T , P ,n A ,nB V dT P T ,n B Note: at constant T and P, the total volume of the solution is: nA dV 0 0 V dn A 0 A nB VBdnB 0 Vm,A, Vm,B are constant for a given composition i.e. think of making up a solution at constant composition. Then V = Vm,A nA + Vm,B nB A similar equation applies for any partial molar quantity. © Dario Bressanini A DEFINE the chemical potential, or partial molar free energy, of A The exact differential for G is G dG(T , P, nA , nB ) T P ,n A ,nB G A nA T , P ,n B G G dP dnA dnB ....... n n A T , P ,n B T , P ,n A ,nB G dT P T ,n Compare with combined law eqn (CL.G) G G S dw , V dG + SdT - VdP = dw rev T P dG = - SdT + VdP + idni G=A+PV dA+PdV+VdP = - SdT + VdP + idni dA = -PdV - SdT + idni and A G U H A nA T ,V ,nB nA T , P ,nB nA S ,V ,nB nA S , P ,nB this the most useful defn., as it is the only one written in terms of intensive variables. B A P , nA , nB © Dario Bressanini T , nA , nB recall: Criteria for equilibrium: dG = - SdT + VdP + idni (dG) T , P i dni dw' i For a reversible, equilibrium process (we’ll take dw 0 such as a phase change or chemical reaction (at const. T, P) dn ( i ice i i 0 liquid )dn = 0 i.e. equilibrium requires ice liquid Hence criteria for equilibrium equal T equal P mechanical equil equal © Dario Bressanini thermal equil chemical equil ice liquid dnice = dnliquid