legge matematica decadimento radiattivo

annuncio pubblicitario
LEGGE MATEMATICA DECADIMENTO RADIATTIVO
Si prende in considerazione un campione di materiale radioattivo composto da un numero molto grande di atomi (N0).
Un certo numero di atomi (N) si disintegra in un intervallo di tempo (t, t + t), di conseguenza il numero di atomi
ancora attivi all'istante t (N) sarà diminuito di una quantità pari a N. Quindi N (numero degli atomi che si
disintegrano) è direttamente proporzionale sia ad N (numero degli atomi presenti all'istante t) sia all'intervallo si
tempo t.
Da questo si ottiene:
N = -  N  t
dove  è una costante positiva caratteristica di ogni elemento radioattivo.
Se viene considerato il tutto in un intervallo infinitesimo la formula precedente risulterà:
dN = - N dt
Questa equazione in matematica è nota come equazione differenziale di primo grado a variabili separate, dalla quale si
avrà ...
dN / N = - dt
Considerando N>0, ci calcoliamo l'integrale generale:
log N = -t + c
N = e -t + c = ke -t
k è una costante che risulta essere uguale a N0, da cui si può vedere che il numero di atomi non ancora disintegrati
decresce con legge esponenziale all'aumentare del tempo t. Inoltre il periodo di disintegrazione varia a seconda del tipo
di isotopo utilizzato ().
Scarica
Random flashcards
geometria

2 Carte oauth2_google_01b16202-3071-4a8d-b161-089bede75cca

Present simple

2 Carte lambertigiorgia

Prova Lavoro

2 Carte nandoperna1

economia

2 Carte oauth2_google_89e9ca76-2f16-41bf-8eae-db925cb2be4b

Verifica

2 Carte

creare flashcard