3. Processi Stocastici Un processo stocastico è una funzione del tempo i cui valori x(t) ad ogni istante di tempo t sono v.a. Notazione: X : insieme di possibili valori tT : generico istante di tempo (T: insieme dei possibili istanti di tempo, o asse temporale) (t) : funzione di probabilità (o di densità di probabilità nel caso continuo) all’istante di tempo t (X, (t)) tT 1 Una realizzazione di un processo stocastico (X, (t)) tT è una particolare evoluzione x(t) per tT. Esempio: si lancia una moneta per un numero infinito di volte agli istanti t = 0,1,2,… X={0,1} dove x0=0 : esce testa e x1=1 : esce croce. tempo 0 1 : xi (xi) 0 1 0 1 1/2 1/2 1/2 1/2 : : (X, (0)) (X, (1)) possibile realizzazione t 0 1 2 3 : xi 0 0 1 0 : 2 Esempio: si lancia una moneta all’istante t=0 e la si lascia nella stessa posizione per ogni t > 0. La tabella (tempo, xi, (xi)) è uguale alla precedente ma vi sono solo 2 possibili realizzazioni tempo 0 1 : xi (xi) 0 1 0 1 1/2 1/2 1/2 1/2 : : t 0 1 2 3 : x1 0 0 0 0 : x2 1 1 1 1 : La tabella (tempo, xi, (xi)) non è sufficiente per descrivere completamente un processo stocastico. 3 I processi stocastici vengono classificati come segue: a stati continui (X è un insieme continuo, ad es. XR) a stati discreti (X è un insieme discreto, ad es. X={x1,x2,…,xn}) a stati finiti se n < + sono anche detti catene a stati infiniti se n = + 4 Esiste anche un’altra classificazione dei processi stocastici a tempo continuo (T è un insieme continuo, ad es. T R+{0}) a tempo discreto (T è un insieme discreto, ad es. T=N) 5 Esempi 1) x è pari al numero di persone in una coda X={0,1, … } spazio di stato discreto T= R+ {0} tempo continuo 2) x è pari all’altezza di una persona il giorno del suo compleanno X= R+ {0} spazio di stato continuo T = {0,1,…,n} tempo discreto 6 Ad un processo stocastico a stati discreti possiamo associare un numero infinito di funzioni di probabilità congiunta: x1,x2,…,xn(t1,t2,… ,tn) = Pr(x(t1)=x1, x(t2)=x2, … , x(tn)=xn) n1 t1 < t2 < … < tn x1 , x2 , … , xn X Una definizione analoga vale per le densità di probabilità nel caso dei sistemi a stati continui. 7 Esempio: si lancia una moneta per un numero infinito di volte agli istanti t=0,1,2,… X={0,1} dove x0=0 : testa e x1=1 : croce. 0(0) = Pr(x(0)=0) = 1/2 0,0(0,1) = Pr(x(0)=0, x(1)=0) = 1/4 Esempio: si lancia una moneta all’istante t=0 e la si lascia nella stessa posizione per ogni t > 0. 0(0) = Pr(x(0)=0) = 1/2 0,0(0,1) = Pr(x(0)=0, x(1)=0) = 1/2 8 Processi stocastici stazionari Un p.s. è detto stazionario se tutte le sue funzioni di probabilità (o densità di probabilità) sono stazionarie ossia invarianti per traslazioni nel tempo. x1,x2,…,xn(t1,t2,… ,tn) = x1,x2,…,xn(t1+ ,t2+ ,… ,tn+ ) n1 t1 < t2 < … < tn x1 , x2 , … , xn X T N.B. Se un p.s. è stazionario allora t T x(t) = 9 Esempio: si lancia una moneta per un numero infinito di volte agli istanti t=0,1,2,… X={0,1} dove x0=0 : testa e x1=1 : croce. x(0) = 1/2 x(1) = 1/2 : Sono p.s. stazionari. Esempio: si lancia una moneta all’istante t=0 e la si lascia nella stessa posizione per ogni t > 0. x(0) = x(1) = … = 1/2 10 Esempio: Una macchina può essere guasta x0=0 o funzionante x1=1 ( X={0,1} ). Vogliamo studiare la probabilità che la macchina sia guasta in un certo anno T={0, 1, … , } (anni di funzionamento). t xi xi x(t) Ovviamente la 0 0 probabilità di guasto 0 1 1 1 aumenta con gli anni. 0 0.1 1 0.9 1 0.9 t 0(t)=1-(0.9) 0 0.19 2 0.81 1(t)=(0.9) t 1 0.81 0 0.27 3 0.73 1 0.73 Non è stazionario. : 11 Processi stocastici ergodici Un processo stazionario si dice ergodico se tutte le proprietà statistiche possono essere determinate da un’unica realizzazione del processo. Il valore atteso della v.a. in un qualunque istante coincide con la media temporale di una qualunque realizzazione. Definizione formale: 12 Si consideri un p.s. stazionario e sia μ la media di ogni v.a. (X, (t)), al tempo t T. Per ogni possibile realizzazione posso calcolare la media temporale: 1 n μˆ lim x(t) processi a tempo discreto n n t 0 1 tfinale processi a tempo μˆ lim x(t)dt tfinale t 0 finale continuo Il p.s. è ergodico se: 1) il limite μ̂ esiste 2) tale limite non dipende dalla particolare realizzazione 3) μˆ μ 13 Lo studio di un p.s. ergodico può pertanto essere effettuato sulla base di una sola realizzazione. Esempio: si lancia una moneta per un numero infinito di volte agli istanti t=0,1,2,… X={0,1} dove x0=0 : testa e x1=1 : croce. x(0) = 1/2 x(1) = 1/2 … μ μˆ 1/2 ergodico Esempio: si lancia una moneta all’istante t=0 e la si lascia nella stessa posizione per ogni t > 0. Ho solo 2 possibili realizzazioni. Il limite μ̂ esiste ma dipende dalla realizzazione. non ergodico 14 Processi stocastici indipendenti Un p.s. è indipendente se i valori assunti dal processo in istanti di tempo diversi sono v.a. indipendenti. Esempio: si lancia una moneta per un numero infinito di volte agli istanti t=0,1,2,… Pr(x(2)=0 | x(1)=0) = 1/2 = Pr(x(2)=0) p.s. indipendente Esempio: si lancia una moneta all’istante t=0 e la si lascia nella stessa posizione per ogni t > 0. Pr(x(2)=0 | x(1)=0) = 1 Pr(x(2)=0) p.s. non indipendente 15 Processi stocastici markoviani Un p.s. è markoviano (o di Markov) se la legge di probabilità che governa i cambiamenti di stato in un dato istante di tempo dipende solo dal valore assunto dallo stato nell’istante di tempo precedente e non da tutti i precedenti valori assunti dallo stato Pr(x(tn)=xn | x(tn-1)=xn-1) = Pr(x(tn)=xn | x(tn-1)=xn-1, x(tn-2)=xn-2, … x(t1)=x1) Il processo non ha memoria di quanto accaduto prima di raggiungere lo stato attuale. 16 Esempio di processo non markoviano: Ho un urna con 2 palline, una bianca e una nera. Effettuo delle estrazioni e ogni volta rimetto 2 palline dello stesso colore di quelle che ho tolto. Esempio di Processo markoviano: si lancia una moneta all’istante t=0 e la si lascia nella stessa posizione per ogni t > 0. 17 Processi stocastici semi-markoviani generalizzati Un p.s. semi-markoviano generalizzato è una estensione di un p.s. markoviano. In particolare in questo caso la legge di probabilità che governa i cambiamenti di stato in un dato istante di tempo dipende sia dal valore assunto dallo stato nell’istante di tempo precedente sia dal tempo di permanenza in tale stato. 18 Processi di conteggio Un p.s. X(t) è detto processo di conteggio se conta il numero totale di eventi accaduti fino al tempo t, ossia nell’intervallo (0,t]. I processi di conteggio sono una speciale classe di p.s.: • a tempo continuo • a stati discreti numero di eventi istanti di tempo in cui si verificano gli eventi 19 Per definizione un processo di conteggio verifica le seguenti condizioni: (i) X(t) 0 (ii) X(t) N (iii) se t’ t’’ X(t’) X(t’’) (iv) se t’ < t’’ la v.a. X(t’’) - X(t’) conta il numero di eventi accaduti in (t’,t’’]. 20 Definizione Un processo di conteggio ammette incrementi indipendenti se t 0, h > 0, le v.a. X(t+ h) - X(t) e X(t) sono tra loro indipendenti. Il numero di eventi in (t,t+ h] è indipendente dal numero di eventi in (0,t]. 21 Definizione Un processo di conteggio ammette incrementi stazionari se t’, t’’ 0, h > 0, le v.a. X(t’+ h) - X(t’) e X(t’’+ h) - X(t’’) hanno la stessa distribuzione di probabilità. La probabilità di avere un certo numero di eventi in un dato intervallo di tempo dipende solo dall’ampiezza dell’intervallo stesso. 22 Processo di Poisson Un processo di Poisson è un caso particolare di processo di conteggio. È particolarmente importante perché un gran numero di fenomeni fisici possono essere descritti (almeno in prima approssimazione) da tale processo: ossia conta gli eventi che si verificano in modo molto casuale ma indipendente dal tempo. N.B. Nel seguito si farà sempre l’ipotesi che due eventi non possano verificarsi mai contemporaneamente. 23 Definizione Un p.s. X(t), t 0, è detto Processo di Poisson con parametro (o intensità, o tasso) se: (i) X(0) = 0 (ii) il processo ha incrementi indipendenti (iii) t 0, h > 0, la v.a. X(t+ h) - X(t) ha distribuzione di Poisson di parametro h. e - x x! Pr(x) 0 x N R+ altrimenti E[X] Var[X] 24 Proprietà: Come conseguenza della (iii) t 0, h > 0, la v.a. X(t+ h) - X(t) ha distribuzione di Poisson di parametro h • E[X(t)] = t e • il processo ha incrementi stazionari. Possiamo pertanto dare la seguente altra definizione di processo di Poisson. 25 Definizione Un processo di Poisson X(t) è un processo di conteggio con incrementi indipendenti e stazionari e tale per cui la v.a. X(t+ h) - X(t) ha distribuzione di Poisson di parametro h, t 0, h > 0. N.B. Il parametro ha le dimensioni dell’inverso del tempo e rappresenta il numero di eventi nell’unità di tempo. Il rapporto 1/ rappresenta pertanto il tempo medio tra due eventi successivi. 26 Proprietà (la diamo senza dimostrazione): I tempi di inter-evento (ossia i tempi tra due eventi successivi) di un processo di Poisson sono una sequenza di v.a. indipendenti aventi distribuzione esponenziale. In particolare, la corrispondente funzione di densità di probabilità è λ t λ e t0 (t) t0 0 dove è il parametro caratteristico del processo di Poisson. Infatti: 1 0 μ t(t)dt è il tempo medio di inter-evento. 27 Memoryless property Ricordiamo preliminarmente che nel caso di densità di probabilità esponenziale con parametro , la funzione di distribuzione cumulativa di probabilità vale: F(t) = 1 - e- t Ora, supponiamo che un evento si verifichi al tempo T. Sia T + V il tempo in cui si verifica l’evento successivo. Supponiamo che al tempo T+z > T l’evento successivo NON si sia verificato. Si è verificato l’evento [V>z]. 28 V T T+z T+z + t età dell’evento Calcoliamo la probabilità che si verifichi l’evento [V z + t ] per un generico t> 0, dato che si è verificato l’evento [V > z]. Probabilità condizionata 29 Pr[V z t and V z] Pr[V z t | V z] Pr[V z] Pr[z V z t] 1 Pr[V z] Poiché i tempi di inter-evento sono caratterizzati da una distribuzione esponenziale Pr[V z] F(z) 1 - e-z (1 - e - (z t) ) (1 - e -z ) Pr[V z t | V z] e -z - e -z e -t e -z -t 1 e e -z 30 Pr[V z t | V z] 1 e-t Tale probabilità condizionata verifica allora le seguenti proprietà: (1) non dipende da z (2) è identica a F(t) = Pr[V t] Questa è la proprietà memoryless (priva di memoria) della distribuzione esponenziale. 31 Teorema (la diamo senza dimostrazione): La memoryless property vale per qualunque distribuzione esponenziale e se una distribuzione gode della memoryless property deve necessariamente essere esponenziale. Riassumendo: Processo di Poisson Tempi di interevento esponenziali Memoryless property 32 Proprietà: Il p.s. risultante dalla sovrapposizione di m processi di Poisson mutuamente indipendenti, caratterizzati dai parametri i, i=1, …, m, è ancora un processo di Poisson caratterizzato dal parametro = 1 + … + m. 33 Esempio: Il processo degli arrivi in coda ad un semaforo è Poissoniano? Se il precedente semaforo è molto lontano potrebbe esserlo poiché gli arrivi sarebbero indipendenti. Se invece il precedente semaforo è vicino, allora le macchine arrivano generalmente a piccoli gruppi e non sono indipendenti. Questo naturalmente nell’ipotesi che il flusso delle macchine sia indipendente dal tempo. 34