Paolo Vineis Riduzionismo: dalla genetica all’epigenetica MRC/HPA Centre for Environment and Health Imperial College London Che cosa e’ il riduzionismo Una posizione filosofica secondo cui un sistema complesso e’ interamente spiegabile dalla somma delle sue parti (per estensione: fenomeni complessi posso essere ridotti e spiegazioni materiali semplici, per es. i comportamenti alla genetica, la scelta morale alla biochimica del cervello) Una critica classica al riduzionismo – Willard Van Orman Quine “Due dogmi dell’empirismo” (1951) Premessa: sono in gioco (a) osservazioni scientifiche; (b) teorie/modelli; (c) le loro “implicazioni” (anche etiche) - e le loro relazioni Ormai e’ ampiamente accettato che le osservazioni sono cariche di teoria: Stegmuller Alcuni esempi: - I test genetici e la loro predittivita’ - la teoria del determinismo biologico e la responsabilita’ individuale (Caspi) Una classica controversia: “Nature and Nurture”, geni e ambiente Qualche notizia sugli avanzamenti della genetica molecolare e dell’epidemiologia genetica: - il dogma “un gene-una proteina” non e’ piu’ vero: “alternative splicing” - la maggior parte delle malattie sono poligeniche (cfr cancro e diabete) - la regolazione/modulazione della espressione – e non solo la sequenza - del DNA sta acquisendo grande rilevanza (epigenetica) Solo alcune rare forme di suscettibilità monogenica sono ad “alta penetranza”, cioè il rischio di malattia è aumentato di 10 o piu’ volte nei portatori (es BRCA1 nel cancro della mammella) Perlopiù la suscettibilità genetica al cancro è affidata a geni a bassa penetranza, cioè con bassa potenza I tumori sono dovuti principalmente a influenze ambientali (NB= cosa intendiamo?), su cui si inserisce la suscettibilità genetica (interazioni geniambiente) 30 925 Odds Ratio 20 715 Reported Risk Allele Frequencies by Odds Ratios for Discrete Traits Sarasquete Osteonecrosis Thorlieifsson Exfoliation Glaucoma 10 Hakonarson Type 1 DM 4 van Heel Celiac Disease 55 33 WTCCC Type 1 DM 2 11 0.0 0.2 0.4 0.6 Risk Allele Frequency (%) 0.8 1.0 Who cares about an OR=1.25? OR = odds ratios, calculated with a simple additive model. For example, for subjects with 10 risk alleles the relative risk would be 3.5. These subjects would represent 13% of the population, and over 54% of the population would carry 10 risk alleles or more. Vineis P et al, Expectations and challenges stemming from genome-wide association studies, Mutagenesis 2009 071012 Calculation of the number needed to screen for a hypothetical low-penetrant gene among subjects exposed to arsenic. Gene Wild-type Variant Relative risk for gene Cumulative risk of cancer Risk reduction % Cumulative risk after intervention Absolute risk reduction NNT Carrier frequency NNS 1.0 1.5 1% 50% 1.5% 50% 0.5% 0.5% 200 80% 0.75% 0.75% 133 20% 666 Ethics of Genetic Testing Paolo Vineis, Habibul Ahsan, Michael Parker Genetic screening and occupational and environmental exposures: Scientific and ethical issues OEM, 2005 The key set of arguments against the use of genetic screening and testing in the workplace is that this is a distraction from the responsibility of employers and legislators to ensure that the working environment is safe for all of those who work there. Instead of using resources to identify workers who are less at risk, the focus should be on finding ways to make the workplace safe for all. Less attention in reducing exposure levels can affect not only people in the working environment but also patients of a GP: e.g. people with the “wildtype” can decide not to quit smoking (www.sciona example) http://www.sciona.com/coresite/index The future: epigenetics? Conrad H. Waddington Epigenetic mutations are coupled with environmental changes. Epigenetic mutations control the shapes and functions of organisms. Epigenetics – Philosophical insight e.g.: Nickel, Cadmium, Arsenic: carcinogenicity also involves DNA hypermethylation and histone deacetylation, both of which contribute to heterochromatin condensation and the epigenetic silencing of some genes. Impressive rediscovery of the influence of environmental agents on gene expression. Uses of epigenetics in environmental epidemiology Identification of environmental fingerprints: - aspecific such as global hypomethylation (detected in reporters such as LINE-1 and Alu - specific e.g. in tumour suppressor genes Prediction of disease risk (e.g. lung cancer) LINE-1 hypomethylation in the Boston Normative Aging Study Effect on LINE-1 methylation* Coeff* (95% CI) p-value Effect on Alu methylation* Coeff (95% CI) p-value Black Carbon 4-hour mean 2-day mean 7-day mean -0.07 (-0.13, -0.01) 0.03 -0.10 (-0.16, -0.03) 0.004 -0.11 (-0.18, -0.04) 0.002 -0.02 (-0.08, 0.04) -0.02 (-0.09, 0.05) 0.01 (-0.06, 0.08) 0.50 0.56 0.75 PM2.5 4-hour mean 2-day mean 7-day mean -0.07 (-0.13, -0.01) 0.03 -0.10 (-0.17, -0.03) 0.003 -0.13 (-0.19, -0.06) <0.001 0.03 (-0.03, 0.09) -0.01 (-0.07, 0.05) -0.01 (-0.07, 0.05) 0.28 0.82 0.71 * Standardized correlation coefficients expressing the fraction of a standard deviation change in DNA methylation associated with a standard deviation change in pollutant level, adjusted for age, BMI, smoking, pack-years, statins, fasting blood glucose, diabetes, %lymphocytes and neutrophils in differential blood count, day of the week, season, outdoor temperature. Baccarelli et al., Am J Resp Crit Care Med 2009 In a prospective study, promoter hypermethylation of multiple genes (including those mentioned above) in the sputum was able to predict lung cancer onset with sensitivity and specificity of 64% (Belinski et al, Cancer Res 2006; 66: 3338). Table: Prevalence and odds ratios for multiple gene promoter methylation events in proximal sputum samples obtained 3 to 18 and 19 to 72 months prior to cancer diagnosis. The genes examined included p16, MGMT, PAX5 ß, DAPK, GATA5, and RASSF1A. No. of genes methylated* Cases (%) Controls (%) Odds ratio (CI) Adjusted odds ratio (CI) 3-18 Months prior to cancer diagnosis 0 3 (6) 7 (15) 1 7 (14) 13 (47) Reference Reference 1.3 (0.26.4) 3.5 (0.340.8) 2 9 (17) 10 (21) 2.1 (0.410.7) 4.3 (0.536.7) 3+ 33 (64) 17 (36) 4.5 (1.019.8) 6.5 (1.235.5) 0.004 0.02 P for trend A nested case-control in the EPIC cohort – results of pilot study (in collaboration with Z Herceg, IARC, and Caroline Relton, Newcastle) Analysis of methylation patterns in candidate genes (p16, RASSF1A, MGMT, MTHFR, GSTPi) in 93 lung cancer cases and 99 controls Exploratory analysis with serum 1-carbon metabolites IMPORTANTE: CAMPIONI PRE-DIAGNOSTICI, USO PREDITTIVO DEI LINFOCITI Lung cancer and 1-carbon metabolism (Johansson, Vineis, Brennan – analyses done at Bevital) – JAMA, June 16, 2010 Analysis by quartiles OR and 95% CI Vitamin B6 1·00 (reference) 0·76 (0·57 - 1·00) 0·54 (0·40 - 0·73) 0·30 (0·32 - 0·59) ptrend5 = 5x10-7 Methionine 1.00 (reference) 0·90 (0·69 - 1·18) 0·51 (0·38 - 0·69) 0·53 (0·40 - 0·72) ptrend5 = 2x10-6 Odds ratios (OR) and 95% confidence intervals (CI) for methylation levels (below/above median in controls) and lung cancer risk by time since blood drawing (Vineis et al, Epigenetics 2010) <= 8 years > 8 years Controls Cases OR 95% CI Controls Cases OR 95% CI CDKN2A/P16 (Tumor Suppressor) 0 6 41 1.00 48 8 >0 9 28 0.42 (0.08-2.19) 35 15 1.00 2.02 (0.71-5.77) P1 0.17 0.05 RASSF1A (Tumor Suppressor) <1.82 5 31 1.00 48 7 >=1.82 10 38 0.51 (0.11-2.39) 35 16 p1 0.41 0.02 1.00 2.91 (0.98-8.61) In questo studio le persone di classe sociale piu’ bassa hanno piu’ spesso ipometilazione di MTHFR E’ possibile che la metilazione di alcuni geni esprima l’effetto cumulativo di diverse esposizioni/stili di vita e contribuisca a spiegare (a) perche’ la somma dei fattori di rischio noti non spiega gli effetti della classe sociale; (b) le cause di “epidemie” come quella di obesita’ – tuttora inspiegata Obesity Trends* Among U.S. Adults 1985 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, Page 28 2001;286:10. © Imperial College London Obesity Trends* Among U.S. Adults 2001 Source: Mokdad A H, et al. J Am Med Assoc 1999;282:16, Page 29 2001;286:10. © Imperial College London Programma di ricerca presso MRC-HPA Centre for Environment and Health, ICL Londra e Fondazione HuGeF, Torino: Epigenetica e alimentazione Inquinamento atmosferico Malattia di Parkinson Staff in London (ICL) Paolo Vineis Toby Athersuch Marc Chadeau Valentina Gallo Aneire Khan Wei Xun Clive Hoggart Shu-Chun Chuang Valeria Troncoso Neil Murphy Mansour Taghavi Rachel Kelly Erica Cule Current personnel at HuGeF Paolo Vineis Silvia Polidoro Fulvio Ricceri (with Pino Matullo) Rossana Critelli Laura Zini Anna Vigna Suria Carlotta Sacerdote (CPO-Piemonte and PhD student) Karin Van Veldhoven (Imperial PhD student) Sabrina Bertinetti Grazie