Table of Fourier Transform Pairs Function, f(t) Definition of Inverse Fourier Transform 1 f (t ) = 2p ¥ ò F (w )e jwt dw Fourier Transform, F(w) Definition of Fourier Transform ¥ F (w ) = -¥ ò f (t )e - jwt dt -¥ f (t - t 0 ) F (w )e - jwt0 f (t )e jw 0t F (w - w 0 ) f (at ) 1 w F( ) a a F (t ) 2pf (-w ) d n f (t ) ( jw ) n F (w ) dt n (- jt ) n f (t ) d n F (w) dw n t ò f (t )dt -¥ F (w ) + pF (0)d (w ) jw d (t ) 1 e jw 0 t 2pd (w - w 0 ) sgn (t) 2 jw Signals & Systems - Reference Tables 1 Fourier Transform Table UBC M267 Resources for 2005 Fb(ω) F (t) Notes (0) Definition. (1) fb(ω) Inversion formula. (2) fb(−t) 2πf (ω) Duality property. (3) e−at u(t) 1 a + iω a constant, <e(a) > 0 (4) 2a + ω2 a constant, <e(a) > 0 (5) Boxcar in time. (6) Boxcar in frequency. (7) Derivative in time. (8) Higher derivatives similar. (9) Z ∞ f (t)e−iωt dt f (t) 1 2π Z −∞ ∞ fb(ω)eiωt dω −∞ e−a|t| β(t) = 1, 0, a2 if |t| < 1, if |t| > 1 2 sinc(ω) = 2 sin(ω) ω 1 sinc(t) π β(ω) f 0 (t) iω fb(ω) f 00 (t) (iω)2 fb(ω) d i fb(ω) dω d2 i2 2 fb(ω) dω b f (ω − ω0 ) tf (t) t2 f (t) eiω0 t f (t) t − t0 f k ke−iωt0 fb(kω) fb(ω)b g (ω) Derivative in frequency. (10) Higher derivatives similar. (11) Modulation property. (12) Time shift and squeeze. (13) Convolution in time. (14) (f ∗ g)(t) 0, if t < 0 u(t) = 1, if t > 0 1 + πδ(ω) iω Heaviside step function. (15) δ(t − t0 )f (t) e−iωt0 f (t0 ) Assumes f continuous at t0 . (16) eiω0 t 2πδ(ω − ω0 ) Useful for sin(ω0 t), cos(ω0 t). (17) Z Convolution: (f ∗ g)(t) = Z Parseval: ∞ ∞ −∞ Z f (t − u)g(u) du = 1 |f (t)| dt = 2π −∞ 2 Z ∞ −∞ ∞ −∞ 2 f (u)g(t − u) du. fb(ω) dω. j sgn(w ) 1 pt u (t ) pd (w ) + ¥ ¥ å Fn e jnw 0t 2p t rect ( ) t tSa( B Bt Sa( ) 2p 2 w rect ( ) B tri (t ) w Sa 2 ( ) 2 n = -¥ A cos( pt t )rect ( ) 2t 2t 1 jw å Fnd (w - nw 0 ) n = -¥ wt ) 2 Ap cos(wt ) t (p ) 2 - w 2 2t cos(w 0 t ) p [d (w - w 0 ) + d (w + w 0 )] sin(w 0 t ) p [d (w - w 0 ) - d (w + w 0 )] j u (t ) cos(w 0 t ) p [d (w - w 0 ) + d (w + w 0 )] + 2 jw 2 2 w0 - w u (t ) sin(w 0 t ) 2 p [d (w - w 0 ) - d (w + w 0 )] + 2w 2 2j w0 - w u (t )e -at cos(w 0 t ) Signals & Systems - Reference Tables (a + jw ) w 02 + (a + jw ) 2 2 w0 u (t )e -at sin(w 0 t ) e w 02 + (a + jw ) 2 2a -a t e -t a2 +w2 2 /( 2s 2 ) s 2p e -s 2 w2 / 2 1 a + jw u (t )e -at 1 u (t )te -at (a + jw ) 2 Ø Trigonometric Fourier Series ¥ f (t ) = a 0 + å (a n cos(w 0 nt ) + bn sin(w 0 nt ) ) n =1 where 1 a0 = T T ò0 2T f (t )dt , a n = ò f (t ) cos(w 0 nt )dt , and T0 2T bn = ò f (t ) sin(w 0 nt )dt T 0 Ø Complex Exponential Fourier Series f (t ) = ¥ å Fn e jwnt , where n = -¥ Signals & Systems - Reference Tables 1T Fn = ò f (t )e - jw 0 nt dt T 0 3 Some Useful Mathematical Relationships e jx + e - jx cos( x) = 2 e jx - e - jx sin( x) = 2j cos( x ± y ) = cos( x) cos( y ) m sin( x) sin( y ) sin( x ± y ) = sin( x) cos( y ) ± cos( x) sin( y ) cos(2 x) = cos 2 ( x) - sin 2 ( x) sin( 2 x) = 2 sin( x) cos( x) 2 cos2 ( x) = 1 + cos(2 x) 2 sin 2 ( x) = 1 - cos(2 x) cos 2 ( x) + sin 2 ( x) = 1 2 cos( x) cos( y ) = cos( x - y ) + cos( x + y ) 2 sin( x) sin( y ) = cos( x - y ) - cos( x + y ) 2 sin( x) cos( y ) = sin( x - y ) + sin( x + y ) Signals & Systems - Reference Tables 4 Useful Integrals ò cos( x)dx sin(x) ò sin( x)dx - cos(x) ò x cos( x)dx cos( x) + x sin( x) ò x sin( x)dx sin( x) - x cos( x) òx 2 cos( x)dx 2 x cos( x) + ( x 2 - 2) sin( x) òx 2 sin( x)dx 2 x sin( x) - ( x 2 - 2) cos( x) ax dx e ax a òe ò xe òx ax dx 2 ax éx 1 ù e ax ê - 2 ú ëa a û e dx é x 2 2x 2 ù e ax ê - 2 - 3 ú a û ëa a dx 1 ln a + bx b ò a + bx dx ò a 2 + b 2x2 Signals & Systems - Reference Tables bx 1 tan -1 ( ) ab a 5 Your continued donations keep Wikibooks running! Engineering Tables/Fourier Transform Table 2 From Wikibooks, the open-content textbooks collection < Engineering Tables Jump to: navigation, search Signal Fourier transform unitary, angular frequency Fourier transform unitary, ordinary frequency Remarks 10 The rectangular pulse and the normalized sinc function 11 Dual of rule 10. The rectangular function is an idealized low-pass filter, and the sinc function is the non-causal impulse response of such a filter. 12 tri is the triangular function 13 Dual of rule 12. 14 Shows that the Gaussian function exp( - at2) is its own Fourier transform. For this to be integrable we must have Re(a) > 0. common in optics a>0 the transform is the function itself J0 (t) is the Bessel function of first kind of order 0, rect is the rectangular function it's the generalization of the previous transform; Tn (t) is the Chebyshev polynomial of the first kind. Un (t) is the Chebyshev polynomial of the second kind Retrieved from "http://en.wikibooks.org/wiki/Engineering_Tables/Fourier_Transform_Table_2" Category: Engineering Tables Views