What!is!a!particle!detector? ! General#Principle:#All#the#particles,#crossing#a#slab#of# matter,#lose#a#fraction#of#their#energy#in#the#material# with#some#probability#by#some#physical#process.# – Charged!Particles:!inelastic!collisions!on!atomic! electrons!hit!along!the!trajectory;! – All!the!hadrons!(charged!and!neutral)!by!nuclear!reactions! on!the!nuclei!hit!along!the!trajectory;! – Electrons!emit!braking!radiation!(bremsstrahlung)! – Photons!may!be!scattered!anelastically!or!not!(ie!Thomson/ Compton!scattering),!absorbed!(photoelectric!eff.),! generate!pairs!e+!e<,!depending!on!the!photon!energy! 10 What!is!a!particle!detector? ! • The! basic! operation! principle! of! ALL! the! detectors! is! to! convert! the! energy! lost! in! the! active! part! in! a! “concrete! signal”! that! can! be! “measured”! (current,! voltage,!light,!heat,...).!! • Different! tecniques,! materials! and! arrangements! depending!on!the!particle!type!to!detect,!on!the!energy! range,!speed,!on!the!particle!rate,…! • For! example,! a! photon! detector! must! be! inevitably! different!from!a!muon!detector.!! • The! “signal”! depends! on! some! cinematic! or! dynamic! “property”!of!the!particle!(eg!energy,!velocity,!linear! momentum!p,!charge,!mass...)!which!is!being!detected. ! • “Universal”! detectors,! sensitive! to! all! the! particles! over!all!the!range!of!their!“properties”!DO!NOT!exist! 11 What!is!a!particle!detector?! General!operation!principle!of!a!detector:! Particle!with!energy!E!→!!transfer!of!energy!fE!(f!≤!1)!to! the!detector!!→!!conversion!in!a!accessible,!measurable! form!of!energy!(light,!current,!voltage,!heat,...)! !Modern!detectors!are!essentially!electrical:!fE!converted!in! electrical!pulses!→!needed!electronic!circuitry!to!form!the! signal! electronic# E# fE# analogic# signal# digital# output# 12! Which!is!the!more!familiar! detector?! Human#eye#(as#any#other#eye)#is#a#particle# detector:#photons# " " " " Test#particle#source# Light#beam# target# detector# Data#processing# Target# Detector# Data#processing# 13 The!oldest!detector!of!photons…!built!billions! of!times! • High#sensitivity#to#photon#in#a# well#defined#frequency#range# • Good#spatial#resolution## • Adaptative#optics#for#photon# focalization# • Large#dynamic#range#(1:1014)#+# threshold#automatic#matching## • Energy#discrimination#(wave# length)# • Rather#slow#(acquisition#speed# +#analysis#~10#Hz)# 14 Other!ways!to!“see”?! Ex.:#by#subtraction# Ex.:#infrared# 15 Electromagnetic!emission! from!a!body! At!a!temperature!of!37!C! (~310!K),!the!emission!is! peaked!in!infrared.! Most!of!matter!is! “transparent”!to!IR! 16 Other!ways!to!“see”?! Ultrasuonds# “energetic” light (X rays) Why#X#rays#and#ultrasounds# are#used,#instead#of# “light”?# 17 Multiwavelength! vision!must!be!used! to!see!different! components!of!our! galaxy! 18 We# see the#subatomic#matter#because#we#hit#it#with# particles#produced#by#sources#(as#the#accelerators#or# radioactive#decays)#which#scatter#or#produce#new# particles#that#reach#the#detectors### 19 For!instance,!the!way!that!incident!particles! are!scattered!off!by!targets!can!reveal!details! of!the!target!particles! 20 Ex:!Rutherford’s!atomic!model! ! Ernest Rutherford 1909 21 Photographic#Plates# Use#of#photographic#paper#as#detector## ➠#Detection#of#photons#/#x(rays# W.#C.#Röntgen,#1895# Discovery#of#the# X(Strahlen # Photographic#paper/film# # e.g.#AgBr#/#AgCl# # AgBr#+# energy ## ➠#metallic#Ag#(blackening)# # +#Very#good#spatial#resolution# +#Good#dynamic#range# (##No#online#recording# (##No#time#resolution# ## 22 Cathodic!ray!tube! J.!Plücker!1858!!➠!J.J.!Thomson!1897! Phosphorence!light!reveals! the!impact!point! accelerator# manipulation# By#E#or#B#field# detector# From:&J.J.&Thomson:&Cathode&Rays.&& Philosophical&Magazine,#44,#293#(1897).## # …#The#rays#from#the#cathode#C#pass#through#a#slit#in#the# anode#A,#which#is#a#metal#plug#fitting#tightly#into#the#tube# and#connected#with#the#earth;#after#passing#through#a#second# slit#in#another#earth(connected#metal#plug#B,#they#travel# between#two#parallel#aluminium#plates#about#5#cm.#long#by#2# broad#and#at#a#distance#of#1.5#cm.#apart;#they#then#fall#on# the#end#of#the#tube#and#produce#a#narrow#well(defined# phosphorescent#patch.#A#scale#pasted#on#the#outside#of#the# tube#serves#to#measure#the#deflexion#of#this#patch…. ## # 23 C.!T.!R.!Wilson,!! 1912,!Cloud!chamber!! First!tracking!detector! The!general!procedure!was!to!allow! water!to!evaporate!in!an!enclosed! container!to!the!point!of!saturation! and!then!lower!the!pressure,!producing! a!super<saturated!volume!of!air.!Then! the!passage!of!a!charged!particle! would!condense!the!vapor!into!tiny! droplets,!producing!a!visible!trail! marking!the!particle's!path.!! 24 Bubble!chamber ! • • The!Big#European#Bubble#Chamber!(BEBC)!is!a!piece!of! equipment!formerly!used!to!study!weak!interactions!at! CERN.!BEBC!was!installed!at!CERN!in!the!early!1970s.!It! is!a!stainless<steel!vessel!which!was!filled!with!35! cubic!metres!of!liquid!deuterium,!D2!or!a!H/Ne!mixture,! whose!sensitivity!was!regulated!by!means!of!a!piston! weighing!2!tonnes.!During!each!expansion,!charged! particles!left!trails!of!bubbles!as!they!passed!through! it.!It!has!since!been!decommissioned!and!is!now!on! display!at!CERN's!Microcosm!museum.! The!BEBC!project!was!launched!in!1966!by!France!and! Germany.!It!was!surrounded!by!a!3.5!T!superconducting! solenoid!magnet.!In!1973,!it!began!operation!at!the! Proton!Synchrotron!(PS).!From!1977!to!1984,!it!was! operated!in!the!West!Area!neutrino!beam!line!of!the! Super!Proton!Synchrotron!(SPS),!where!it!was!exposed!to! neutrino!and!hadron!beams!at!higher!energies!of!up!to! 450!GeV.!By!the!end!of!its!active!life!in!1984,!BEBC!had! delivered!a!total!of!6.3!million!photographs!to!22! experiments!devoted!to!neutrino!or!hadron!physics.! Around!600!scientists!from!some!fifty!laboratories! throughout!the!world!had!taken!part!in!analysing!the! 3000!km!of!film!it!had!produced.!!(from!wikipedia)! http://cerncourier.com/cws/article/cern/28742 25 Geiger<Muller! The#“first”# electrical# detector#ever# built# Electrical!signal!reveals!the!passage!of!a!charged!particle! 26 Particle detection Principle Particle Interactions: Examples Energy Lass by Ionisation : Bethe-Bloch Formula Bathe-Block: - Classical derivation Bethe-Bloch Formula dE/dx Fluctuations Bethe-Block describe the mean energy loss. ; measurement via energy loss ΔE in a material with thickness ΔX with ΔE = 𝑁 𝑛=1 𝛿𝐸 n N = no. of collisions, 𝛿𝐸 is the energy loss in a single collision Ionisation loss 𝛿𝐸 is statistically Distributed. So called Energy loss “straggling “ It is a complicated probleme.g. thin absorbers gives Landau distribution. dE/dX Fluctuations – Landau Distribution Particle Energy Deposit: Energy Loss of Pions in Cu Energy loss of pions in Cu! Minimum ionizing particles (MIP): βγ = 3-4 dE/dx falls ~ β-2; kinematic factor [precise dependence: ~ β-5/3] dE/dx rises ~ ln (βγ)2; relativistic rise [rel. extension of transversal E-field] Saturation at large (βγ) due to density effect (correction δ) [polarization of medium] Units: MeV g-1 cm2 : Energieverlust in Kupfer. Gezeigt wird der Einfluß der SchalenkorMIP looses ~ 13 MeV/cm βγ = 3 4 r Dichteeffektkorrektur. Das Minimum des Energieverlustes liegt8.94bei [density of copper: g/cm3] or dem Minimum verhält sich dE/dx ∝ β −2 , nach dem Minimum ogarithmisch an und kommt dann inExperimental den Particle Sättigungsbereich (DichteMarco Delmastro! Physics! 6! Understanding Bethe-Bloch! Bethe-Bloch Understanding 1/β2-dependence: Remember: Slower particles Z fell electric Z force of dx atomic electrons for dt longer time … p? = F = F ? ? v i.e. slower particles feel electric force of atomic electron for longer time ... Relativistic rise for βγ > 4: High energy particle: transversal electric field increases Abbildung 2.2:interaction Energieverlust in Kupfer. wird...der Einfluß de due to Lorentz transform; Ey ➙ γEy. Thus cross section Gezeigt increases particle at rest γ=1 Marco Delmastro! rektur und der Dichteeffektkorrektur. Das Minimum des Energieverl βγfast ≃moving 3...4. Vor dem Minimum verhält sich dE/dx ∝ β −2 , nach d particle steigt dE/dx logarithmisch an und kommt dann in den Sättigungsber effekt). Man beachte: Corrections: Die auf der Ordinate angegebene Größe ist vi (nicht − dE ). Quelle: Phys. Rev. D 54:S132, 1996. dx low energy : shell corrections grows γ gross high energy : density corrections • Der fehlende Faktor 2 in der trivialen“ Ableitung kann wie folgt ve ” EinExperimental kleinerer Grenzwert von Emin vergrößert den Anteil des Ene 7! Particle Physics! Understanding Bethe-Bloch! Bethe-Bloch Understanding Density correction: Polarization effect ... [density dependent] ➙ Shielding of electrical field far from particle path; effectively cuts of the long range contribution ... More relevant at high γ ... [Increased range of electric field; larger bmax; ...] For high energies: Shell ⇤/2 ! ln(~⌅/I) + ln ⇥Abbildung 1/2 2.2: Energieverlust in Kupfer. Gezeigt wird der Einfluß de rektur und der Dichteeffektkorrektur. Minimum Density Das effect leads todes Energieverl βγ ≃ 3...4. Vor dem Minimum verhält sich dE/dx ∝ β −2 saturation at high energy ..., nach d correction: steigt dE/dx logarithmisch an und kommt dann in den Sättigungsber Arises if particle velocity is close to orbital effekt). Man beachte: Die auf der Ordinate angegebene Größe ist vi Shell correction velocity of electrons, i.e. βc ~(nicht ve. − dE ). Quelle: Phys. Rev. D 54:S132, 1996.are dx Assumption that electron is at rest breaks down ... Capture process is possible ... Marco Delmastro! in general small ... • Der fehlende Faktor 2 in der trivialen“ Ableitung kann wie folgt ve ” EinExperimental kleinerer Grenzwert von Emin vergrößert den Anteil des Ene 8! Particle Physics! Energy charged particles ! Energyloss Lossofof(heavy) Charged Particles 6 27. Passage of particles through matter 10 Dependence on Mass A Charge Z of target nucleus Minimum ionization: ca. 1 - 2 MeV/g [H2: 4 MeV/g cm-2] cm-2 − dE / dx (MeV g−1cm2) 8 6 5 H2 liquid 4 He gas 3 2 1 0.1 Sn Pb 1.0 0.1 Marco Delmastro! 10 100 βγ = p/ Mc Fe Al C 1000 10 000 1.0 10 100 Muon momentum (GeV/c) 1000 Experimental Particle Physics! 9! TPC Signal [a.u.] Identifying by dE/dx! dE/dx andparticles Particle Identification 180 Measured energy loss 140 [ALICE TPC, 2009] 100 60 Bethe-Bloch Remember: dE/dx depends on β! 20 0.1 0.2 1 2 Momentum [GeV] Marco Delmastro! Experimental Particle Physics! 10! dE/dx for particle identification dE/dx The energy loss as a function of momentum p=mcβγ is dependent on the particle mass By measuring the particle momentum (deflection in a magnetic field) and the energy loss one gets the mass of the particle, i.e. particle ID (at least in a certain energy region) 18 Dependence on absorber thickness • • The Bethe-Bloch equation describes the mean energy loss When a charged particle passes the layer of material with thickness x , the energy distribution of the δ-electrons and the fluctuations of their number (nδ) cause fluctuations of the energy losses ΔE The energy loss ΔE in a layer of material is distributed according to the Landau function: energy For a realistic thin silicon detector nδ 1-10, fluctuations do not follow the Landau distribution 19 Energy loss at small momenta • • energy loss increases at small βγ particles deposit most of their energy at the end of their track # Bragg peak # Important effect for tumor therapy 20 Energy loss at small momenta Small energy loss $ Fast Particle Cosmis rays: dE/dx α Z2 Small energy loss $ Fast particle Pion Large energy loss $ Slow particle Pion Discovery of muon and pion Pion Kaon 21 Mean particle range from the total energy T to zero More often use empirical formula (# see exercise) 22 Mean particle range! Marco Delmastro! Experimental Particle Physics! 13! Energy Energyloss Lossofofelectrons! Electrons Bethe-Bloch formula needs modification Incident and target electron have same mass me Scattering of identical, undistinguishable particles ⌧ dE dx el. Z 1 m e 2 c2 ⇥ 2 T = K ln + F (⇥) 2 2 A 2I [T: kinetic energy of electron] Wmax = ½T Remark: different energy loss for electrons and positrons at low energy as positrons are not identical with electrons; different treatment ... Marco Delmastro! Experimental Particle Physics! 14! Bremsstrahlung %3:8;7*6$8%;8'5*8#&<6*78%;8'5*8 Bremsstrahlung and Radiation Length! ! ! Bremsstrahlung $%# arises % " if particles &' " are accelerated in Coulomb field of nucleus $ ! ! # $ !$ " *A ! # ✓ JKL ◆2 z Z 1 e 183 dE E = 4 NA E ln / 1 dx A BC,---8D*EF 4⇤⇥0 mc2 m2 $8&6'2"A2*6"'7?74'7<8 Z3 2 ( 2 i.e. energy loss proportional to 1/m2 ➙ main relevance for electrons ... ... or ultra-relativistic muons #! ! $%# (' +% " &' $ ' Consider electrons: # # " ," ( 2 dE Z2 2 183 = 4 NA re · E ln 1 dx A Z3 " dE E = 'dx X0 with $%# ! ! ( ' # +% &' $ Marco Delmastro! # # X0 = "" % A 4 NA Z 2 re2 ln *) ," 183 1 Z3 E = E0 e After passage of one X0 electron has lost all but (1/e)th of its energy 2"$7"'7%#86*#)'58H).<3/I [Radiation length in g/cm2] Experimental Particle Physics! x/X0 [i.e. 63%] 15! ( 1 PeV 10 PeV Critical Energy ! – Critical Energy Bremsstrahlung 0 0.25 EcSol/Liq 610 MeV = Z + 1.24 dx dx Ion Brems 200 Copper X0 = 12.86 g cm−2 Ec = 19.63 MeV 100 al t To 70 Rossi: Ionization per X0 = electron energy 50 40 30 E lu ng 710 MeV Z + 0.92 Tot ss tr ah Ion Approximation: EcGas = y = k/E 1 Br Brems dE (Ec ) dx dE /dx × X0 (MeV) = 0.75 Figure 27.11: The normalized bremsstrahlung cross section k dσLP M / ✓ ◆ ◆ ✓ ✓The ◆ lead versus the fractional photon energy y = k/E. dE dE dE vertical axis has of photons per radiation length.= + dx dE (Ec ) dx 0.5 em Ex s≈ ac tb re m Critical energy: 0 Ionization 20 Brems = ionization Example Copper: Ec ≈ 610/30 MeV ≈ 20 MeV 10 2 5 10 20 50 Electron energy (MeV) 100 200 Figure 27.12: Two definitions of the critical energy Ec . Marco Delmastro! Experimental Particle Physics! 16! Total of Electrons Electrons! Total Energy Loss of 27. Passage of particles through matter from PDG 2010 e– e– e+ e– e– Bhabha e– Marco Delmastro! 0.15 0.10 Ionization Møller (e −) Bhabha (e +) e+ e+ Electrons Bremsstrahlung 0.5 e– Lead (Z = 82) γ 0.20 0 1 (cm2 g−1) Møller − 1 dE ( X 0−1) E dx 1.0 Positrons 0.05 Positron annihilation 10 E (MeV) 100 1000 Figure 27.10: Fractional energy loss per radiation length in lead as a Fractional energy loss per radiation length in lead functionγ of electron or as positron energy. Electron (positron) scattering is a function of electron or positron energy Annihilation as ionization when the energy loss per collision is below 0.255 considered Experimental Particle Physics! 17! 27. Passage of particles through matter Energy muons ! Plot for Muons Energyloss Lossfor – Summary µ+ on Cu µ− 10 LindhardScharff 100 Bethe-Bloch Radiative AndersonZiegler Eµc Radiative losses Radiative Minimum effects ionization reach 1% Nuclear losses Without δ 1 0.001 0.01 0.1 1 10 0.1 1 10 100 1 [MeV/c] Marco Delmastro! PDG 2010 Stopping power [MeV cm2/g] 4 βγ 100 1000 10 4 10 5 10 6 10 100 1 10 100 [GeV/c] Muon momentum [TeV/c] Fig. 27.1: Stopping power (= ⟨−dE/dx⟩) for positive muons in copper as a Experimental Particle Physics! 18! Note!that!the!trajectory!is!not!a!straight!line!because!of!the! collisions!against!nuclei,!i.e.!multiple!scattering!(later).! 5 6 R/M!g!cmX2!GeVX1!! Range 7 Percorso'delle'par,celle'(Range)' 50000 20000 C 10000 Pb 5000 R / M (g cm#2 GeV#1) The!rangeXenergy!relationships!! are!often!expressed!as!R(E)=(E/Eo)n!! e.g.!the!range!in!meters!of!low!! energy!protons!can!be!!approximated!! with!n=1.8!and!Eo=9.3!MeV.! ! Fe 2000 H2 liquid He gas 1000 500 200 # E &1.8 R(E) ≅ % ( $ 9.3' 100 50 20 10 5 E!in!MeV,!!R!in!meters!of!air! 2 1 0.1 2 0.02 1.0 5 0.05 2 !" = p/ Mc 0.2 0.1 5 0.5 10.0 1.0 2 5 2.0 5.0 100.0 € 10.0 Muon momentum (GeV/c) 0.02 0.05 0.1 0.2 0.5 1.0 2.0 Pion momentum (GeV/c) 0.1 0.2 0.5 1.0 2.0 5.0 10.0 20.0 Proton momentum (GeV/c) 5.0 10.0 50.0 Scaling!laws ! • Sometimes!data!are!not!available!on!the!range!or!energy!loss! characteristics!of!precisely!the!same!particleXabsorber!combination! needed!in!a!given!experiment.!Recourse!must!then!be!made!to!various! approximations,!most!of!which!are!derived!based!on!the!Bethe! formula!and!on!the!assumption!that!the!dE/dX!per!atom!of!compounds! or!mixtures!is!additive.!This!latter!assumption,!known!as!the! BraggXKleeman!rule,!may!be!written!! • In!this!expression,!N!is!the!atomic!density,!and!Wi)represents!the! atom!fraction!of!the!ith!component!in!the!compound!C.!! • As!an!example!of!the!application!of!BB,!the!linear!stopping!power! of!alpha!particles!in!a!metallic!oxide!could!be!obtained!from! separate!data!on!dE/dX!in!both!the!pure!metal!and!in!oxygen.!! • Some!caution!should!be!used!in!applying!such!results,!however,! since!some!measurements!for!compounds!have!indicated!a!stopping! power!differing!by!as!much!as!10X20%!from!that!calculated!from!BB.!! 9 dE/dx!per!composti!e!miscugli.! Una!buona!approssimazione!della!perdita!di!energia!per!composti!e! miscugli!è!data!dalla!regola!di!Bragg:!una!media!pesata!delle!perdite! di!energia!degli!elementi!i!del!composto!M,!pesate!con!la!frazione!di! elettroni!dell’elemento! ! 1 dE w1 ' dE $ w2 ' dE $ = % " + % " + ⋅⋅⋅⋅ ! ρ dx ρ1 & dx #1 ρ2 & dx #2 ! wi = ai Ai AM AM = ∑ ai Ai i Dove!a1,!a2,!…!e’!il!nr.!di!elettroni!nello!iXesimo!elemento!del! composto!M!e!Ai!e’!il!nr!atomico!dell’elemento! Possiamo!definire!dei!valori!efficaci!come!segue:! ! ! ! ! Z eff = ∑ ai Zi ln I eff = ∑ ai Zi ln I i Z eff Aeff = ∑ ai Ai δeff = ∑ ai Ziδi Z eff E!riscrivere!la!dE/dx!in!termini!dei!valori!efficaci.! ! # 10 dE/dX!vs.!depth! ! A!plot!of!the!specific!energy!loss!along!the!track!of!a!charged! particle!is!known!as!a!Bragg)curve.!! Until!the!particle!is!a!MIP,!its!energy!loss!stays!constant!(more! exactly!it!varies!slowly!–logarithmicallyXwith!βγ.!Remember:!dE/dX! !1/β2! and!β!≈!1!for!MIPs)! As!βγ!goes!down!below!MIP,!the!E!loss!increases!very!rapidly!because!of! 1/β2!dependence!or!as!1/T!(kinetic!E)!as!the!particle!becomes!non! relativistic!and!there!is!a!peak!in!energy!deposit!:!Bragg!peak! βγ!>!3.5:!<dE/dX>!≈!(dE/dX)min! βγ <!3.5:!<dE/dX>!>>!(dE/dX)min! Near!the!end!of!the!track,!the!charge! is!reduced!through!electron!pickup!and! the!curve!falls!off:!particle!becomes! very!slow!and!easily!captures! electrons!from!medium!and!becomes! neutral!before!stopping.! dE/dX!vs.!depth! ! Particles!with!high!charge! begin!to!pick!up!electrons! early!in!their!slowingXdown! process.!! Note!that!in!an!Al!absorber,! singly!charged!H!ions!(protons)! show!strong!effects!of!charge! pickup!below!about!100!keV,!but! doubly!charged!3He!ions!show! equivalent!effects!at!about!400! keV.!! ! 17/03/11 dE/dx phenomena 2 2 2 2 ' . dE z Z 2 m c β γ Tmax + δ (βγ )$! !1 2 2 2 e = 4πN A re me c 2 & 2 ln , )−β − # 2 dx A 2 β I !% ,!" )* • Slow!particles!lose!most!of!their!energy!in!a! short!distance,!since!kinetic!energy!T!~!β2 − dE dT dE =− = dx dx dx T0 T0 T ΔX = − ΔX = − ∫ 1 (dE / dx)o T0 ∫ 0 T0 dT T0 dT / dx 0 T dT = − ΔX = − ∫ TdT T0 (dE / dx)o T0 0 T0 = ρΔy 2(dE / dx)o • For!30!MeV!protons!in!water,!<dE/dx>!~!50!MeV! cm2/gm,!so!Δy!~!0.3!cm!! 13 Application of Range • The localized energy deposition of heavy charged particles can be useful therapeutically = proton radiation therapy 14 Application of Range • Monoenergetic!proton!beam!loses!energy!more! rapidly!as!it!slows!down;!gives!sharp!Bragg! peak!in!ionization!versus!depth!! • Using!a!range!of!proton! energies!allows!a!varied! profile!versus!depth! • Photon!beam!(xXrays)! deposits!most!energy!! near!entrance!into!tissue! • Tumor!therapy!with!hadrons! !!(adroXtherapy)! 15 Proton Therapy • Energy range of interest from 50 (eye) – 250 (prostate) MeV 16 Proton Therapy 17 18 Proton Therapy • Schematic apparatus for hadron-therapy 19 Proton Therapy • Modulator, aperture, and compensator Modulator 20 Proton Therapy 21 Proton Therapy 22 Proton Therapy • Lung cancer treatment – Intensity modulated radiation therapy vs proton therapy 23 Pair!Production! The!total!pair!production!cross!section!is!obtained! integrating!over!the!the!energy!fraction! ! In!the!Born!approximation!(which!is!not!very!accurate! for!low!energy!or!high!Z)!one!finds! No screening (ξ >> 1) and mec 2 << hν << 137mec 2 Z −1/3 σ pair ( 7 " 2hν % 109 + = 4Z α r * $ ln − 2' ) 9 # mec & 54 , 2 2 e NB: ξ = screening parameter Complete screening (ξ → 0 ) and hν >> 137mec 2 Z −1/3 σ pair (7 1 −1/3 + = 4Z α r * ( ln183Z )- − )9 , 54 2 2 e E. Fiandrini Rivelatori di particelle 1718 ie!high!energy! 2 Pair!Production! ! Notes! % % % % σpair ~!Z2! Above!some!photon!energy!(say!>!1!GeV),! σpair becomes!a!constant! In!order!to!account!for!pair!production! from!the!Coulomb!field!of!atomic! electrons,!Z2!is!replaced!by!Z(Z+1)! approximately!since!the!cross!section!is! smaller!by!a!factor!of!Z! Usually!we!don t!distinguish!between!the! source!of!the!field! E. Fiandrini Rivelatori di particelle 1718 10 Pair!Production! ! 2me!(1.022!MeV)!of!the!photon s!energy!goes!into!creating! the!electron!and!positron! ! The!electron!will!typically!be!absorbed!in!a!detector! ! The!positron!will!typically!annihilate!with!an!electron! producing!two!annihilation!photons!of!energy!me!(0.511! MeV)!each! ! If!these!photons!are!not!absorbed!in!the!detector!then! the!pair!production!energy!spectrum!will!look!like!! E. Fiandrini Rivelatori di particelle 1718 12 B)#CC&C( B)#CC&C( σG7+@(?*" σG7+@(?*" Interactionsofofphotons Photons with with Matter Interaction matter! ,&. ,&. κ%HD ge of particles through matter B)#CC&C(D$?#%&&4.7)%C E 7$#15 B)#CC&C(D$?#%&&4.7)%C E 7$#15 ,&-. ,&-. σB#1>$#% κ" 475&B7).#%&4!#9&F5 4.5&6(78&4!&9&:;5 Carbon (Z = 6) <&(=>()?1(%$7@& <&(=>()?1(%$7@&σ σ$#$ $#$ σ>A(A 4.5&6(78&4!&9&:;5 ,&-. Photo effect σ>A(A σG7+@(?*" ,&/. ,&/. σG7+@(?*" ,&. Rayleigh ,&. scattering ,0&1. ,0&1. ,0&(2 1 MeV σ*A8A)A ,&/(2 κ%HD Lead (Z = 82) <&(=>()?1(%$7@&σ $#$ σ>A(A σG7+@(?*" 1 MeV Pair production ,&/. σ*A8A)A ,&. κ" κ%HD σB#1>$#% σB#1>$#% κ" ,0&1. B)#CC&C(D$?#%&&4.7)%C E 7$#15 ,0&1. PhotonσB#1>$#% Total Cross Sections κ%HD κ%HD κ" σB#1>$#% κ" ,&-(2 !"#$#%&'%()*+ 4.5&6(78&4!&9&:;5 ,&3(2 ,00&3(2 ,0&1. ,0&(2 ,&/(2 ,&-(2 ,&3(2 ,00&3(2 !"#$#%&'%()*+ $#15 Pair ProductionPhoton total cross sections as a function of ene <&(=>()?1(%$7@& σ$#$ 27.14: Figure : Photon cross sections as a function of energy in carbon ,&-. total Compton scattering σ >A(A t and lead, showing the contributions of different processes: wing the contributions of different processes: Marco Delmastro! 30! Particle Physics! =ejection, Atomic photoelectric effect (electron ejection, σp.e. Experimental Atomic photoelectric effect (electron photon Interactionsofofphotons Photons with with Matter Interaction matter! I Characteristic for interactions of photons with matter: I - dI A single interaction removes photon from beam ! Possible Interactions dI = Photoelectric Effect Compton Scattering Pair Production [ µ : absorption coefficient ] depends on E, Z, ρ Rayleigh Scattering (γA ➛ γA; A = atom; coherent) Thomson Scattering (γe ➛ γe; elastic scattering) Photo Nuclear Absorption (γΚ ➛ pK/nK) Nuclear Resonance Scattering (γK ➛ K* ➛ γK) Delbruck Scattering (γK ➛ γK) Hadron Pair production (γK ➛ h+h– K) Marco Delmastro! µ I dx Experimental Particle Physics! ➛ Beer-Lambert law: I(x) = I0 e with µx = 1/µ = 1/n⇥ [ mean free path ] 28! Electromagnetic showers! Showers Electromagnetic Reminder: Dominant processes at high energies ... Photons : Pair production Electrons : Bremsstrahlung X0 Pair production: ◆ ✓ 7 183 ⇥pair ⇡ 4 re2 Z 2 ln 1 9 Z3 = 7 A 9 NA X0 Absorption coefficient: µ = n⇥ = Marco Delmastro! Bremsstrahlung: [X0: radiation length] [in cm or g/cm2] dE E dE Z2 2 183 = 4 NA r · E ln 1 = X0 dx A e 3 Zdx ➛ E = E0 e NA 7 · ⇥pair = A 9 X0 Experimental Particle Physics! x/X0 After passage of one X0 electron has only (1/e)th of its primary energy ... [i.e. 37%] 32! Figure 27.11: The normalized bremsstrahlung cross section k dσLP M /dk lead versus the fractional photon energy y = k/E. The vertical axis has un of photons per radiation length. Electromagnetic Electromagnetic showers! Showers 200 dE (Ec ) dx Brems dE = (Ec ) dx Ion ✓ dE dx Brems 30 E ✓ dE dx EcSol/Liq ◆ Ion 10 610 MeV = Z + 1.24 Z ·E 800 MeV 2 5 10 20 50 Electron energy (MeV) Transverse size of EM shower given by radiation length via Molière radius 100 200 Figure 27.12: Two definitions of the critical energy Ec . with: incomplete, dE and near y = divergence is removed dE the infrared E 0, where Ec = ⇡ = const. & amplitudes from nearby scattering cent the interference dx of bremsstrahlung X dx X Brems 0 Ion February 2, 2010 RM 21 MeV = X0 Ec [see also later] Marco Delmastro! lu ng Ionization Brems = ionization 710 MeV = Z + 0.92 ◆ Rossi: Ionization per X0 = electron energy 50 40 20 Approximations: EcGas l ta o T 70 ss tr ah Critical Energy [see above]: Br dE /dx × X0 (MeV) 100 em Ex s≈ ac tb re m Further basics: Copper X0 = 12.86 g cm−2 Ec = 19.63 MeV Experimental Particle Physics! 0 15:55 RM : Moliere radius Ec : Critical Energy [Rossi] X0 : Radiation length 33! Electromagnetic Electromagnetic showers! Showers Typical values for X0, Ec and RM of materials used in calorimeter X0 [cm] Ec [MeV] RM [cm] Pb 0.56 7.2 1.6 Scintillator (Sz) 34.7 80 9.1 Fe 1.76 21 1.8 14 31 9.5 BGO 1.12 10.1 2.3 Sz/Pb 3.1 12.6 5.2 PB glass (SF5) 2.4 11.8 4.3 Ar (liquid) Marco Delmastro! Experimental Particle Physics! 34! Sim rlo Ca te on (M rs ue ha Sc en sch − eti e gn + + ma e γ tro + lek K e+ se + → die K ine ng ge K → hlu lun γ+ ra K ick sst e+ ntw em Br ). E0 rn e rch Ke ess 2 du − P = oz = n Pr 1 se K vo E ( a ie td igt erg ht ier l r En sic e E1 v ck ie rü ,d X0 = 2 be X0 ke en E± ch rec t na rd we f Au Analytic Shower Model A simple shower model! rS de Simple shower model: [from Heitler] Only two dominant interactions: Pair production and Bremsstrahlung ... γ + Nucleus ➛ Nucleus + e+ + e− [Photons absorbed via pair production] rt sie ali e + Nucleus ➛ Nucleus + e + γ [Monte Carlo Simulation] [Energy loss of electrons via Bremsstrahlung] Shower development governed by X0 ... Use Simplification: After a distance X0 electrons remain with only (1/e)th of their primary energy ... [Ee looses half the energy] Photon produces e+e−-pair after 9/7X0 ≈ X0 ... Ee ≈ E0/2 Assume: E > Ec : no energy loss by ionization/excitation ur ch Io Marco Delmastro! Electromagnetic Shower Eγ = Ee ≈ E0/2 [Energy shared by e+/e–] ... with initial particle energy E0 E < Ec : energy loss only via ionization/excitation Experimental Particle Physics! 35! AAnalytic simple Shower showerModel model! Sketch of simple shower development E0 Simple shower model: [continued] Shower characterized by: 0 Number of particles in shower Location of shower maximum Longitudinal shower distribution Transverse shower distribution Number of shower particles after depth t: / / / 1 2 3 4 ➛ t = log2 (E0/E) 6 7 ... use: Number of shower particles at shower maximum: t t [X0 ] 8 Fig. 8.1. Sketch of a simple model for shower parametrisation. Longitudinal components; measured in radiation length ... t= N (E0 , E1 ) = 2t1 = 2 log2 ( Energy per particle after depth t: E0 E= = E0 · 2 N (t) 5 x X0 Total number of shower particles with energy E1: N (t) = 2t Marco Delmastro! / E 0 2 E 0 4 E 0 8 E 0 16 E0/E 1) = E0 E1 E0 Ec N (E0 , E1 ) / E0 N (E0 , Ec ) = Nmax = 2tmax = Shower maximum at: tmax / ln(E0/Ec ) Experimental Particle Physics! 36! Electromagnetic Showerdevelopment! Profile EM shower longitudinal 8.1 Electromagnetic calorimeters Longitudinal profile 600 5000 MeV Parametrization: dE = E0 t e dt d E / d t [MeV/X0] [Longo 1975] ⇥t α,β : free parameters tα : at small depth number of secondaries increases ... –βt e : at larger depth absorption dominates ... 400 2000 MeV 200 1000 MeV 500 MeV Numbers for E = 2 GeV (approximate): α = 2, β = 0.5, tmax = α/β 0 5 0 More exact [Longo 1985] [Γ: Gamma function] Marco Delmastro! ⇥t ➛ tmax = 1 ⇥ = ln 100 ◆ E0 + Ce Ec 10 / d t [MeV/X0] (⇥t) 1 e dE = E0 · ⇥ · dt ( ) ✓ Experimental Particle Physics! 1 10 t [X0] 15 20 with: Ce = 0.5 [γ-induced] Ce = 1.0 [e-induced] lead iron aluminium 38! EM shower transverse Electromagnetic Showerprofile! Profile Transverse profile z/X0 Abbildung 8.4: Longitudinalverteilung der Energiedeposition in einem elekt energy deposit Schauer für zwei Prim ärenergien der Elektronen [arbitrary unites] Parametrization: dE = e dr r/R M + ⇥e r/ min α,β : free parameters RM : Molière radius λmin : range of low energetic photons ... Inner part: coulomb scattering ... Electrons and positrons move away from shower axis due to multiple scattering ... Outer part: low energy photons ... r/ R r/RM r/R MM Photons (and electrons) produced in isotropic processes (Compton scattering, photo-electric move away from Abbildung 8.5: effect) Transversalverteilung der Energie in einem elektromagnetisc shower axis; predominant beyond shower maximum, particularly in high-Z absorber media... unterschiedlichen Tiefen gemessen Shower gets wider at larger depth ... Marco Delmastro! Experimental Particle Physics! 159 41! Longitudinal Showerprofiles Shape EM shower shower longitudinal development! ctromagnetic (longitudinal) Energy deposit per cm [%] Depth [X0] Energy deposit of electrons as a function of depth in a block of copper; integrals normalized to same value [EGS4* calculation] Depth of shower maximum increases logarithmically with energy tmax / ln(E0/Ec ) Depth [cm] *EGS = Electron Gamma Shower Marco Delmastro! Experimental Particle Physics! 39! Longitudinal development of EM shower Shower decay: after the shower maximum the shower decays slowly through ionization and Compton scattering " NOT proportional to X0 Z = 82 26 13 11 The longitudinal shower shape EM showers a nutshell! Some Usefulin'Rules of Thumbs' Radiation length: 180A g X0 = Z 2 cm2 Critical energy: 550 MeV Ec = Z [Attention: Definition of Rossi used] Shower maximum: Longitudinal energy containment: Transverse Energy containment: Marco Delmastro! tmax E = ln Ec Problem: Calculate how much Pb, Fe or Cu is needed to stop a 10 GeV electron. Pb : Z = 82 , A = 207, ρ = 11.34 g/cm3 Fe : Z = 26 , A = 56, ρ = 7.87 g/cm3 Cu : Z = 29 , A = 63, ρ = 8.92 g/cm3 1.0 1.0 0.5 { e– induced shower γ induced shower L(95%) = tmax + 0.08Z + 9.6 [X0 ] R(90%) = RM R(95%) = 2RM Experimental Particle Physics! 43! Thermalization energy of the neutron: 1/40 eV Radial Field The single wire proportional counter E/p=Reduced electric field See next slides see next slides Resolve left/right ambiguities L S S L L S S L Dopo un percorso x gli elettroni hanno subito uno sparpaglimento dN/dr= (N_{0}/(\sqrt{4\pi Dt}))e^{-x^2/4Dt} \sigma=\sqrt{2Dt}=\sqrt{2Dx/v}= =\sqrt{2Dx/\mu E} D=coe!ciente di di"usione p_{0}= pressione gas \sigma_{0}= sezione d'urto di collisione delle particelle con una molecola del gas m= massa particella D= (2/3\sqrt{\pi})(1/\mu \sqrt{\sigma_{0}})(\sqrt{(kT)^3/m}) Rivelatori di Particelle 17 Time Projection Chamber Time Projection Chamber • The most sophisticated gas position detector is the Time Projection Chamber or TPC: a 3D tracking detector capable of providing information on many points of a particle track along with information on the specific energy loss, dE/dx, of the particle. • The TPC makes use of ideas from both the MWPC and drift chamber. The detector is a essentially a large gas-filled cylinder with a thin high voltage electrode at the center. (At high energy colliders, the • diameter and length of the cylinder can be as large as two meters). • • When voltage is applied, a uniform electric field directed along the axis is created. A parallel magnetic field is also applied. The ends of the cylinder are covered by sector arrays of proportional anode wires arranged as shown. Parallel to each wire is a cathode strip cut up into rectangular segments. These segments are also known as cathode pads. From Leo Drift to endplace where x,y are measured Drift-time provides z Analogue readout provide dE/dx 38 Magnetic field provide p (and reduce transverse diffusion during drift) TPC TPC Traiettoria della particella Pad catodiche Fili anodici B gas Elettrodo centrale (≈ -50kV) Piano di lettura & La camera è divisa in 2 metà tramite un elettrodo centrale & Gli elettroni di ionizzazione primaria si muovono nel campo elettrico verso le placche finali della camera (normalmente delle MWPC). Campo magnetico // al campo elettrico. La diffusione ortogonale al campo è soppressa dal campo B. & Il tempo di arrivo degli elettroni sulle placche finali fornisce la coordinata lungo l’asse del cilindro (z). La moltiplicazione degli elettroni avviene vicino agli anodi. x e y si ottengono dagli anodi e dal catodo della MWPC suddiviso normalmente in pad. Rivelatori di Particelle 39 Time Projection Chamber 40 • • • At a colliders, the detector is positioned so that its center is at the interaction point. The TPC thus subtends a solid angle close to 4π. Particles from IP pass through the cylinder volume producing free e- which drift to the endcaps where they are detected by the anode wires as in a MWPC. This yields the position of a space point projected onto the endcap plane. One coordinate is given by the position of the firing anode wire while the 2nd is obtained from the signals induced on the row of cathode pads along the anode wire. Using the center-ofgravity method, this locates the position of the avalanche along the firing anode wire. The third coordinate, along the cylinder axis, is given by the drift time of the ionization e-. Since all ionization electrons created in the sensitive volume of the TPC will drift towards the endcap, each anode wire over which the particle trajectory crosses will sample that portion of the track. This yields many space points for each track allowing a full reconstruction of the particle trajectory. TPC From Leo 41 TPC • • • Because of the relatively long drift distance, diffusion, particularly in the lateral direction, becomes a problem. B field confines the e- to helical trajectories about the drift direction. This reduce diffusion by as much as a factor of 10. In order to avoid deviating the trajectories of the drifting e-, the B and E fields must be in perfect alignment and uniform over the volume of the drift zone down to about one part in 104. Rivelatori di Particelle 42 TPC La TPC permette di determinare un punto nello spazio ( x,y,z ovvero r,φ,z ). Il segnale analogico sull’anodo fornisce dE/dx. E//B " angolo di Lorentz = 0 e la velocità di deriva è quindi parallela sia al campo elettrico che magnetico. Il campo magnetico sopprime la diffusione ┴ al campo (Gli elettroni spiralizzano attorno a B.) Per E~ 50KV/m e B ~1.5 T " raggi di Larmor ~1 µm Richieste: i. Per misurare bene la coordinata z bisogna conoscere perfettamente la vD " calibrazione tramite laser e correzioni per la pressione e temperatura. ii. La deriva avviene su lunghe distanze " gas molto puro e sempre monitorato. iii. Poco materiale (solo gas) " minimizzo lo scattering multiplo e la conversione dei fotoni. Esempi: PEP-4 TPC p=8.5 atmosfere, Ar=80%, CH4=20% Vcentr=-55kV B=1.325T lunga 2m e con raggio 1m. Aleph TPC lunga 4.4 m e diametro 3.6 m, risoluzione σrφ=173µm, σz=740 µm per leptoni isolati. Rivelatori di Particelle 43 TPC Molti ioni positivi creati nella zona di moltiplicazione vicino agli anodi della MWPC che possono andare fino all’elettrodo centrale " carica spaziale che deteriora il campo " si introduce una griglia (gate) Gate open Gate closed Il gate è normalmente chiuso, viene aperto solo per un breve tempo quando un trigger esterno segnala un evento interessante ! passano gli elettroni. Viene chiuso di nuovo per impedire agli ioni di tornare verso l’elettrodo centrale. ALEPH TPC ΔVg = 150 V (ALEPH coll., NIM A 294 (1990) 121, W. Atwood et. Al, NIM A 306 (1991) 446) Rivelatori di Particelle 44 TPC • A problem which arises during operation is the accumulation of a space charge in the drift volume due to positive ions from avalanches drifting back towards the central cathode. These ions are sufficiently numerous that a distortion of the electric field in the drifting volume occurs. • This is prevented by placing a grid at ground potential just before the anode wires. Positive Ions are then captured at this grid rather than drifting back into the sensitive volume. The grid also serves to separate the drift region from the avalanche zone and allows an independent control of each. Rivelatori di Particelle 45 TPC • • Since the Q collected at the endcaps is the energy loss of the particle, the signal amplitudes from the anode also provide information on the dE/dx of the particle. If p is known from the curvature of its trajectory in the B field, for example, then this information can be used to identify the particle In order for this method to work, however, sufficient resolution in the dE/dx measurement must be obtained. This is much more difficult to realize as many factors must be considered, e.g., electron loss due to attachment, wire gain variations in position and time, calibration of the wires, saturation effects, choice of gas and operating pressure, etc.,. all of which require careful thought! Because of the very large amount of data produced for each event, an important consideration is the readout and data acquisition system for a TPC An approach which has been used to use flash ADCs directly coupled to the sense wires. These ADCs are sufficiently fast such that several wires can be multiplexed into one ADC. Rivelatori di Particelle 46 Time Projection Chamber TPC measures all 3 space coordinates σx=σy~0.1-0.2 mm (drift time), σz~0.2-1mm (readout pad size) Used at LEP, RHIC Many hits per track (>100) ⇒ excellent dE/dx measurement PEP4/9-TPC Drawbacks: Very complicated electric field shaping: E||B to reduce effects of diffusion Long drift times ⇒ complicated gas system Lots of electronic channels ⇒ complicated electronics 47 Time Projection Chambers Note that the electric and magnetic fields are parallel and must be very homogeneous to permit accurate reconstruction. Laser “tracks” are used for calibration and alignment but extracting good calibration constants is tricky. Diffusion of the drifting electrons would normally smear out the measured track but the magnetic field limits this by causing the electrons to spiral in the drift direction ATLAS TPC Rivelatori di particelle ATLAS TPC 48 Scintillators – General Characteristics Trasparency Principle: dE/dx converted into visible light Detection via photosensor [e.g. photomultiplier, human eye ...] Main Features: Sensitivity to energy Fast time response Pulse shape discrimination Plastic Scintillator BC412 Requirements High efficiency for conversion of exciting energy to fluorescent radiation Transparency to its fluorescent radiation to allow transmission of light Emission of light in a spectral range detectable for photosensors Short decay time to allow fast response Scintillators – Basic Counter Setup Thin window Mu Metal Shield Iron Protective Shield 48 Light Photomultiplier [or other photosensor] Scintillator A N D B. R 1 G H I N I vertical memory of the scope and is of no interest, because the setup samples the vertical amplifier output voltage before it is moved after each trigger pulse. The X component, on the other hand, is worth more attention; in fact at very low trigger rates this displacement becomes non-negligible between two subsequent triggers, resulting in a decrease or increase of the number of points used by the scope to produce a complete CRT sweep and, therefore, in a widening or narrowing of the time axis. There are different ways of taking this error into account in order to make the the necessary correction, but the easiest and most reliable one is to count the points of the sweep in the two following cases: when the sampling rate is high (e.g. 1000 Hz), and at the actual sampling rate during the measurement. This can be done by counting the input trigger pulses of the scope during the time interval between two sweep-trigger output pulses. PMT Base the lamp and the PM, two neutral fil Wratten Nos. 96ND60 and 96ND30) and (Kodak Wratten No. 98) are inserted in holder (13). A variable light attenuator (7 the middle of the tube, consisting of t sheets, one of them fixed, the other rotata exterior. A slot [(10) and detail view A-A] the proximity of the filters' holder to cl completely when necessary. For all the m here reported, only the central part of cathode was illuminated by using a mask w hole of 0.8 cm diameter. As a lamp, a Philips type DM 160 indica been used. The light emitted by the tube is to the grid bias voltage, which can be potentiometer: pulse driving of the lam possible by a suitable connection. Before recording the SER pulse shape it to put the photomultiplier in SER oper independent measurement. The required SER spectrum is then located by SCA th window-width setting. For a setting corresponding to the SE [voltage divider network etc.] 4. "SER" pulse visualization: mechanical setup and measurement The PM under examination is contained within an iron tube connected to the light source (fig. 2); between Scintillator Types: Photosensors G. B I A N C H E T T I PMT Pulse ? Output Signal Organic Scintillators Inorganic Crystals Gases Photomultipliers Micro-Channel Plates Hybrid Photo Diodes Visible Light Photon Counter Silicon Photo Multipliers F-I 0 0 I 5 5 I 10 10 I 15 Time [ns] Fig. 3. SER pulse shape. I-IT= 2450 V- 50 sweeps. Measuring time l h 5 min. Pulse amplitude is about 120mV. Fwhm Rise-time 1.6 ns. Organic Scintillators Naphtalene Aromatic hydrocarbon compounds: e.g. Naphtalene [C10H8] Antracene [C14H10] Stilbene [C14H12] ... Very fast! [Decay times of O(ns)] Antracene Scintillation is based on electrons of the C = C bond ... Scintillation light arises from delocalized electrons in π-orbitals ... Transitions of 'free' electrons ... Two pz orbitals π bond Organic Scintillators Molecular states: Absorption in 3-4 eV range Singlet states Triplet states Fluorescence in UV range [~ 320 nm] ➥ usage of wavelength shifters Fluorescence : Phosphorescence : S1 ➛ S0 [< 10-8 s] T0 ➛ S0 [> 10-4 s] Organic Scintillators Shift of absorption and emission spectra ... Intensity Transparency requires: Stokes-Shift Absorption Emission λ Franck-Condon Principle Excitation into higher vibrational states De-excitation from lowest vibrational state Excitation time scale : 10-14 s Vibrational time scale : 10-12 s S1 lifetime : 10-8 s Energy Shift due to S1 Excited State S0 Ground State Vibrational States Nuclear distance Organic Scintillators – Properties Scintillator material Density [g/cm3] Refractive Index Wavelength [nm] for max. emission Decay time constant [ns] Naphtalene 1.15 1.58 348 11 4⋅103 xxx Antracene 1.25 1.59 448 30 4⋅104 xxx p-Terphenyl 1.23 1.65 391 6-12 1.2⋅104 xxx NE102* 1.03 1.58 425 2.5 2.5⋅104 xxx NE104* 1.03 1.58 405 1.8 2.4⋅104 xxx NE110* 1.03 1.58 437 3.3 2.4⋅104 xxx NE111* 1.03 1.58 370 1.7 2.3⋅104 xxx BC400** 1.03 1.58 423 2.4 2.5⋅102 xxx BC428** 1.03 1.58 480 12.5 2.2⋅104 xxx BC443** 1.05 1.58 425 2.2 2.4⋅104 xxx Photons/MeV * Nuclear Enterprises, U.K. ** Bicron Corporation, USA Organic Scintillators – Properties Organic Scintillators – Properties Light yield: [without quenching] dL dE = L0 dx dx Quenching: non-linear response due to saturation of available states Birk's law: dE dL dx = L0 dx 1 + kB dE dx [kB needs to be determined experimentally] Also other ... parameterizations ... Response different ... for different particle types ... Inorganic Crystals conduction band Materials: exciton band Mechanism: Energy deposition by ionization Energy transfer to impurities Radiation of scintillation photons scintillation [luminescence] Time constants: Fast: recombination from activation centers [ns ... μs] Slow: recombination due to trapping [ms ... s] traps excitations impurities [activation centers] quenching Sodium iodide (NaI) Cesium iodide (CsI) Barium fluoride (BaF2) ... electron hole valence band Energy bands in impurity activated crystal showing excitation, luminescence, quenching and trapping Inorganic Crystals Crystal growth Example CMS Electromagnetic Calorimeter PbW04 ingots One of the last CMS end-cap crystals Light Output Inorganic Crystals – Time Constants Exponential decay of scintillation can be resolved into two components ... N = Ae t/ f + Be t/ s ⌧f : decay constant of fast component ⌧s : decay constant of slow component Time Scintillation Spectrum for NaI and CsI Intensity [a.u.] Inorganic Crystals – Light Output NaI(Tl) CsI(Na) CsI(Tl) Wavelength [nm] Strong Temperature Dependence [in contrast to organic scintillators] Inorganic Crystals – Light Output Spectral sensitivity Inorganic Scintillators – Properties Scintillator material Density [g/cm3] Refractive Index Wavelength [nm] for max. emission Decay time constant [μs] NaI 3.7 1.78 303 0.06 8⋅104 xxx NaI(Tl) 3.7 1.85 410 0.25 4⋅104 xxx CsI(Tl) 4.5 1.80 565 1.0 1.1⋅104 xxx Bi4Ge3O12 7.1 2.15 480 0.30 2.8⋅103 xxx CsF 4.1 1.48 390 0.003 2⋅103 xxx LSO 7.4 1.82 420 0.04 1.4⋅104 xxx PbWO4 8.3 1.82 420 0.006 2⋅102 xxx LHe 0.1 1.02 390 0.01/1.6 2⋅102 xxx LAr 1.4 1.29 * 150 0.005/0.86 4⋅104 xxx LXe 3.1 1.60 * 150 0.003/0.02 4⋅104 xxx Photons/MeV * at 170 nm Inorganic Scintillators – Properties Numerical examples: NaI(Tl) λmax = 410 nm; hν = 3 eV photons/MeV = 40000 τ = 250 ns PBWO4 λmax = 420 nm; hν = 3 eV photons/MeV = 200 τ = 6 ns Scintillator quality: Light yield – εsc ≡ fraction of energy loss going into photons e.g. NaI(Tl) : 40000 photons; 3 eV/photon ➛ εsc = 4⋅104⋅3 eV/106 eV = 11.3% PBWO4 : 200 photons; 3 eV/photon ➛ εsc = 2⋅102⋅3 eV/106 eV = 0.06% [for 1 MeV particle] Scintillators – Comparison Inorganic Scintillators Advantages high light yield [typical; εsc ≈ 0.13] high density [e.g. PBWO4: 8.3 g/cm3] good energy resolution Disadvantages complicated crystal growth large temperature dependence Expensive Organic Scintillators Advantages very fast easily shaped small temperature dependence pulse shape discrimination possible Disadvantages lower light yield [typical; εsc ≈ 0.03] radiation damage Cheap Scintillation in Liquid Nobel Gases Decay time constants: Materials: Helium : τ1 = .02 μs, τ2 = 3 μs Argon : τ1 ≤ .02 μs Helium (He) Liquid Argon (LAr) Liquid Xenon (LXe) ... Excitation Excited molecules A A*2 A* A De-excitation and dissociation A Collision [with other gas atoms] Ionization A* + A2 A*2 Ionized molecules Recombination e– UV LAr : 130 nm LKr : 150 nm LXe : 175 nm Plastic and Liquid Scintillators In practice use ... solution of organic scintillators [solved in plastic or liquid] + large concentration of primary fluor + smaller concentration of secondary fluor + ... Scintillator array with light guides Scintillator requirements: Solvable in base material High fluorescence yield Absorption spectrum must overlap with emission spectrum of base material LSND experiment Plastic and Liquid Scintillators A Primary fluorescent - Good light yield ... - Absorption spectrum matched to excited states in base material ... B Energy deposit in base material ➛ excitation Solvent S1A S0A C Wave length shifter Primary Fluor S1B γA Excitations Secondary fluorescent Secondary Fluor S1C γB S0B S0C γC Plastic and Liquid Scintillators Some widely used solvents and solutes POPOP Polystyrene ... ... p-Terphenyl Wavelength Shifting Principle: Absorption of primary scintillation light Re-emission at longer wavelength Adapts light to spectral sensitivity of photosensor Requirement: Good transparency for emitted light Schematics of wavelength shifting principle Scintillation Counters – Setup Scintillator light to be guided to photosensor ➛ Light guide [Plexiglas; optical fibers] Light transfer by total internal reflection [maybe combined with wavelength shifting] Liouville's Theorem: Complete light transfer impossible as Δx Δθ = const. [limits acceptance angle] Use adiabatic light guide like 'fish tail'; ➛ appreciable energy loss 'fish tail' Scintillation Counters – Setup WS fibre Wavelength-shifting fibre Scintillator Steel Steel Scintillator Source Source tubes tubes 2008 JINST 3 S orimemented h subeach of 2]. The e 5.10. chined which ule gap ximise es both r readx return s, suite girdh plasThese Photomultiplier Photomultiplier ATLAS Tile Calorimeter ounted in an external steel box, which has the cross-section tains the external connections for power and other services Finally, the calorimeter is equipped with three calibration 137 Cs radioactive source. These systems test the optical nd are used to set the PMT gains to a uniformity of ±3% Photon Detection Purpose : Convert light into a detectable electronic signal Principle : Use photo-electric effect to convert photons to photo-electrons (p.e.) Requirement : High Photon Detection Efficiency (PDE) or Quantum Efficiency; Q.E. = Np.e./Nphotons Available devices [Examples]: Photomultipliers [PMT] Micro Channel Plates [MCP] Photo Diodes [PD] HybridPhoto Diodes [HPD] Visible Light Photon Counters [VLPC] Silicon Photomultipliers [SiPM] Initially we used conductors, because it's easier to extract electrons; but now we use Semiconductors, because in a conductor material, even if it's a very thin layer of material, the electrons loses all it's small energy, on the contrary that doesn't happen in a semiconductor. Semiconductors has a better quantum e"ciency, the energy of the electrons is bigger than the one of the conductors. A photon passing through the semiconductor-> and electron is extracted, so now we have a hole and an electron, but the energy of the electron can only be lost by creating a new couple hole-electron, not by recombination. Photomultipliers Principle: Electron emission from photo cathode Secondary emission from dynodes; dynode gain: 3-50 [f(E)] Typical PMT Gain: > 106 [PMT can see single photons ...] PMT Collection Photomultipliers – Photocathode Bialkali: SbRbCs; SbK2Cs γ-conversion via photo effect ... Photon entrance window photo cathode Electron 4-step process: Electron generation via ionization Propagation through cathode Escape of electron into vacuum Q.E. ≈ 10-30% [need specifically developed alloys] Photomultipliers – Dynode Chain Dynodes Electron Anode Voltage divider UB Multiplication process: Electrons accelerated toward dynode Further electrons produced ➛ avalanche Secondary emission coefficient: δ = #(e– produced)/#(e– incoming) n = number of dynodes Typical: δ = 2 – 10 n = 8 – 15 ➛ G = δn = 106 – 108 Ub = di!erential potential between cathode and anode Gain fluctuation: δ = kUD; G = a0 (kUD)n dG/G = n dUD/UD = n dUB/UB Ud = di!erential potential between tosubsequent dynodes Photomultipliers – Dynode Chain Optimization of PMT gain Anode isolation Linearity Transit time B-field dependence Venetian blind Box and grid Linear focused PM’s are in general very sensitive to B-fields ! Even to earth field (30-60 μT). μ-metal shielding required. Circular focused Photomultipliers – Energy Resolution Energy resolution influenced by: Linearity of PMT: at high dynode current possibly saturation by space charge effects; IA ∝ nγ for 3 orders of magnitude possible ... light collection efficiency Photoelectron statistics: given by poisson statistics. nne ne e Pn (ne ) = n! p n /hni = 1/ ne dE Photons ne = ⇥ ⇥ ⇥ Q.E. dx MeV with ne given by dE/dx ... For NaI(Tl) and 10 MeV photon; photons/MeV = 40000; ne η = 0.2; Q.E. =0.25 = 20000 n /hni = 0.7% Secondary electron fluctuations: Pn ( ) = n ⇥n /hni = 1/ e n! p with dynode gain δ; and with N dynodes ... ✓ ⇥n hni ◆2 = 1 + ... + σn/<n> dominated by first dynode stage ... 1 N ⇡ 1 1 ... important for single photon detection A particle to become a photon must lost around 100MeV: n_{\gamma}= {(dE/dx)\over(100MeV)} k*n_{\gamma}<n_{\gamma} k*k'<1 k'(k*n_{\gamma})<k*n_{\gamma} Scintillator Light Guide PMT Anode Signal Quantum E!ect = N_{Photons}/N_{gamma} The energy to produce a gamma is 100Mev In principle we can say the find signal is proportional to the energy released in the scintillator. PHOTOCATHODE For the photocathodeCONDUCTORS are not the best choice because the electrons have a low energy and so the do not get out of the material. Quantum e!ect of conductors≈10^{-3} ≈0.2% So we choose the SEMICONDUCTORS: the electrons goes to the valence bond and leaves an hole, the energy of the electron make him leaves the material. Quantum e!ect of semiconductors≈0.3≈30% CuBe dynode Photomultipliers – Energy Resolution δ δ Philips photonic 'standard' dynodes For detection of single photons GaP(Cs) Negative electron affinity (NEA) Philips photonic 1 p.e. Large δ ! ... yields better energy resolution E [keV] counts counts E [eV] 1 p.e. 2p.e. CuBe dynode Houtermanns NIM 112 (1973) 121 NAE dynode Philips photonic pulse height pulse height Micro Channel Plate "2D Photomultiplier" Gain: 5⋅104 Fast signal [time spread ~ 50 ps] B-Field tolerant [up to 0.1T] But: limited life time/rate capability Chapter 2 Light Detectors ICFA the device is covered with an anti-reflecting SIO2 lay Silicon Photomultipliers Layout Silicon Photomultiplier:SiPM Geiger Mode tracks on the surface connect all pixels to the commo Principle: + n Pixelized photo diodes • Pixelsinoperated in Geiger mode operated Geiger Mode (non-linear response) Single pixel works as a binary device Si* Resistor Vbias Al - conductor Si02 + Guard ring n- Photocurrent (log scale) Features: Granularity Gain Bias Voltage Efficiency : : : : - EE,, V/cm V/cm 1E5 Energy = #photons seen by summing over all pixels no amplification linear amplification 6 1E6 10 4 1E4 10 1E3 2 1E2 10 1E1 1 1E0 non-linear Geiger mode Doping Structure of SiPM [1] * Resistor 2 Al - conductor 103Sipixels/mm Figure 2.13: Left: Schematic view of the SiPM topology Avalanche region material on the low resistive substrate serves as a drift reg < 100 V electron generated in this region will subsequently drift i a b layer where the electrical field is high enough for avalanch ca. 30 % Breakdown Voltage electrical field in order to avoid unwanted avalanche break 1: (a) Silicon photomultiplier microphotograph, (b) impurity levels are higher. Right: Diagram of the topol electric Works atFigure room temperature! E, V/cm 106 Reverse Bias Voltage Insensitive to magnetic fields tion in epitaxy layer. 4 2.3.1 Gain and Single Pixel Response Alexander Tadday 24.05.07 Photo-detectors Light amplifier From light to electric charge ★ Principle: photo-electric effect to convert photons to photo-electrons (pe) ★ Input: weak signal (few photons) ★ Output: sizeable current (100uA~100 mA) ★ High photon detection efficiency (or Quantum Efficiency = Npe/Nγ) Available Devices ★ Photomultipliers (PMT) ★ Microchannelplates (MCP) ★ Photodiodes (PD) ★ Hybrid PhotoDiods (HPD) ★ Silicon photomultiplier Photomultiplier (PMT) 4 ) P r i m a r y p h o t o - e l e c t ro n s emitted with a given probability (QE) fby the photocathode 5) First focusing electrode: collects and accelerates pe emitted by the pc 9) Ultra High Vacuum (UHV): pe moves in the vacuum (~10-6mb) in a glass vessel 8) HV supply to dynodes 1) Incoming light 7) Anode: collects the charge 2) Transparent window (glass or quartz) 3) Photocathode: emits pe when hit by photons 14 6) Dynodes: multiplying electrodes. Primary pe are accelerated and multiplied to secondary electrons by an external HV Scintillation detectors M.Battaglieri - INFN GE PMT components ★ The window defines the light frequency cut (glass, borosilicate, UV-transparent, quartz (fused silica) ★Matched to the scintillation light spectral emission and the photocathode Bialkali ★ The photocathode is a thin layer deposited on the entrance window ★ Quantum Efficiency = Npe/Nγ ~ 5% - 50% ★ Different types of photocathodes ★ Bialkali (SbKCs): low ionizing potential, high QE to visible light (blue) ★ Radiant Sensitivity: RS=Ioutput/Pinput ★QE= 124/λ(nm) RS (mA/W) ★ The PC is highly oxidisable requiring O2 partial pressure <10-8 mbar 15 Te-Cs (Quartz) Bialkali (Quartz) Bialkali low noise Cs - I Scintillation detectors M.Battaglieri - INFN GE ★ Primary PE are collected by the first dynode ★ Dynodes are kept at DV and covered by a bialkali layer with a Secondary Emission Coefficient d>1 (2-5, depending on the incident electron energy) ★ HV (400-3000V) is distributed between dynodes by a resistive or capacitive voltage divider ★PMT gain is defined as the ratio of cathode and anode currents G = dn =(K DV)n DG/G = n DV/V • K = a constant depending on geometry and collection • DV = ΔV between dynodes (100-300V) • n = number of dynodes •G ~ 104 - 107 • If d=10, 1% variation on DV reflects in 10% gain variation • Electron multiplication is a stochastic process • Poisson distribution fluctuations Q = G Npe (σQ /Q)2= 1/Npe (σQ /Q)2= 1/(d-1) • Fluctuations of secondary electrons • Resolution is dominated by the first dynode stage (secondary statistics relevant for single photon detection) 16 Scintillation detectors M.Battaglieri - INFN GE Time resolution ★ Transit Time refers to the time to cross the tube (1 -10 ns) ★ Transit Time Spread: jitter of a single pe transit time. For Npe scales as TTS/√(Npe) ★ related to PMT size, HV, collection … Linearity ★Relationship between incoming photons and anode charge ★ affected by: - current in the voltage divider; - spread in HV; - G drift … Stability ★ PMT G as a function of time ★ affected by: - T variations; - high rate; - long shutdown Magnetic fields ★ External fields affect PMT operations (even Hearth field!): time jitter, gain, ★ passive shielding (layers of ferromagnetic materials) up to 200 Gauss 17 Scintillation detectors M.Battaglieri - INFN GE Silicon photomultipliers (silicon PM or MPPC) Photon-counting ★ Principle: pixelized photo-diode working in Geiger mode ★ Each pixels is a binary (on/off) device ★ Counts incident photons by summing the pixel ★Reverse voltage applied to a APD > Vbk produces a discharge (Geiger mode) ★ Large output (detectable) for each incoming photon ★ A quenching resistor quickly stops the avalanche 18 Scintillation detectors M.Battaglieri - INFN GE Silicon Photomultipliers HAMAMATSU MPPC 400Pixels One of the first SiPM Pulsar, Moscow Silicon Photomultipliers CALICE HCAL Prototype Scintillation Counters – Applications Time of flight (ToF) counters Energy measurement (calorimeters) Hodoscopes; fibre trackers Trigger systems ATLAS Minimum Bias Trigger Scintillators Particle track in scintillating fibre hodoscope Attenuation length ★ Scintillation light is lost in the scintillator for two reasons: lateral surface leak and reabsorbing ★ Sizeable scintillators (>1m) suffer by ‘light attenuation’ ★ Attenuation length depends on surface machining and geometry ★ Data sheets report the bulk attenuation length: the real case need to be measured or simulated Attenuation length L(x) = L0 e(-x/l) • L0 = light intensity at the origin • l = attenuation length Light intensity at distance x L(x) = L0 e(-x/l) l = (232±39) cm EJ200 Mylar wrapping Attenuation length 5 Scintillation detectors M.Battaglieri - INFN GE Birk’s law ★ Scintillator response depends on the energy and the ionizing particle (ionisation density) ★ Increasing the locally deposited energy, the light emission, per energy unit, decreases ★ E.g. in plastic, a low energy proton (higher ionisation) produces 1/3 of light an isoenergetic electron ★ Deviation from linearity is due to a saturation effect in molecular de-excitation Attenuation length A dE/dx dL/dx = L0 1+ kB dE/dx Light produced per length unity • dE/dx: ionization •L0 = light intensity at low ionisation intensity (electron) • kB = Birk’s parameter (measured) electrons 6 protons Scintillation detectors M.Battaglieri - INFN GE PULSE SHAPE DISCRIMINATION Saldana, Stemen 2 Motivation • In PROSPECT, we look at: • • Gamma-like prompt (positron) and neutron-like delay events (neutron capture). • Our main backgrounds are high-energy gammas (dominant) and fast neutrons. • Pulse Shape Discrimination (PSD) is used on both prompt and delay signals to discern the type of event. • Need to investigate what level of PSD we need for our scintillator. • In lab we use gamma and neutron sources to study scintillator’s response. • Neutron-like prompt (proton recoil) and neutron-like delay (neutron capture) 3 Saldana, Stemen Pulse Shape Discrimination (PSD) • Technique used to discriminate between signals of different types of radiation. • E.g. gamma and neutron events. • Organic scintillator: – Fast (prompt fluorescence) and slow (delayed fluorescence) characterize a pulse. – Fraction of light in slow component depends on nature of incoming particle. – Slow component depends on 𝑑𝐸 rate of energy loss 𝑑𝑥 . Greater for particles with large Image from Knoll, G. Radiation and Detection Measurement. p. 227. 𝑑𝐸 . 𝑑𝑥 Particles detection with scintillator detectors - electrons - gamma rays -neutrons - heavy ions DETECTION <--- depends on the quantity of emitted light Particle + Material -> Interaction mechanism -> Energy lost -> Quantity of emitted light DIFFERENT KIND OF PARTICLES (Di!erent interaction mechanism) can need di!erent materials to be detected and also SAME PARTICLE Detection or Energy measurement CAN NEED DIFFERENT KIND OF DETECTORS ELECTRONS DETECTION: almost all kinds of scintillators are fine ENERGY MEASUREMENT: problem: BACKSCATTERING (e backscat./ e all) prop to Z Z organic Scint. << Z inorganic Scint --> ORGANIC SCINT. more suited to detect e BUT if e- has very high energy -> dE/dx due to Bremsstralung and shower development --> High Z scint. More suited ---> so inorganic scintillators GAMMA RAYS Interaction with matter mechanism: 1. Photoelectric interaction 2. Pair production 3. Compton Scattering --> to be preferred materials where sigma 1. and 2. then sigma 3. 1. and 2. -> gamma interaction produces charged particle 3. -> gamma does not disappear Inorganic scintillators -->because we try to avoid Compton scattering Z Photo electric Pair compton Er HEAVY IONS Large dE/dx --> large quenching e!ect --> "low" light emission (low scintillation e"ciency) 1/10 in organic scintillators 1/2 in Inorganic Scintillators --> Inorganic scintillators are preferred (NaI, ZnS, ...) giving also a better proportionality SIGNAL/ENERGY NEUTRONS To be detected they have to interact in such a way to produce a detectable CHARGED particle. TYPICAL REACTIONS TO DETECT NEUTRONS (n,p) for Fast neutrons (n,gamma) and (n,alpha) for Termic neutrons (n,p) reaction take advantage from material with high H%(percentage of Hydrogen) -->ORGANIC SCINTILLATOR (if possible choose one with good PFD!) (n, gamma) and (n, alpha) HIGH sigma with 6Li and 10B--> choose scintillators containing 6Li and 10B Organic Liquid scintillators can be loaded with those elements and they also have a good PSD! Very low Z material--> to absorb more photons as possible We can require thata the value on the right is <= to 1 to have the beta threshold Beta threshold is very important if we consider p=m \beta \gamma c so particles of di!erent masses have di!erent threshold! Another relation that gives us theta cherenkov that is related to the number of photons emitted Beta threshold is the minumum beta of the particle needed to have cherenkov light Che r e nkovRadi at i on Angle between Cherenkov photons and track of particle → velocity of particle particle lpart = t β c photons llight = t c/n correct for recoil: cos c = c 1 = n c n cos c = 1 ℏk 1 1− 2 n 2p n p: momentum of particle, ℏk momentum of photon (k = 2 π/λ) ℏk<<p → correction for recoil usually not needed ● ● ● ● Threshold: Cherenkov emission only for β>1/n βs=1/n emission forward direction θc = 0 maximum for β=1 , Cherenkov angle θc = arccos 1/n → Cherenkov radiation occurs only in media and for frequencies with n(β) >1 Threshold energy s= Es m0 c = 2 1 = 2 1 1− 1−1/ n 2 s Measurement of γs allows mass determination if energy is known Katharina Müller autumn 14 3 Cherenkov radiation is emitted since the particle polarizes atoms along its track. If v>c/n this polarization is not symmetric and there is a non-vanishing dipole field -> emission of radiation Particle's Trajectory Number of photons very low In the detector if the particle continues its trajectory we see: In the detector if the particle stops its trajectory we see: Phot onyi e l d Di!erence between what is emitted and what can be detected Intensity of the Cherenkov radiation: # γ per unit length of particle path and per unit of wave length depends on charge and velocity of particle → Photon yield Number of photons emitted 2 2− 1 1 d dN 2 2 2 =2 z ∫ 1− 2 2 ≈ 2 z sin c = 490 sin 2 c [cm−1 ] 2 dx 21 n 1 blue! 400 - 700 nm 2 −1 1150 sin c [cm ] incl. UV 200-700nm dN/dλ Example: characteristic glow from reactor Katharina Müller autumn 14 6 First of the three categories of cherenkov detectors: p=m \gamma\beta c Type sofChe r e nkovde t e kt or s Cherenkov detectors are mainly used for particle ID ● ● ● Threshold – Cherenkov detector Only particles with β>βc emit Cherenkov light simple construction: radiator and light detector (Photomultiplier) DiPerential Cherenkov detector (DISC-Zähler) Use Θ(β) allows to determine Θ-interval Ring-Imaging-Cherenkov-Detectors (RICH) Measure Θ(β) spherical mirror used to focus light onto photon detector centre of ring: direction of particle radius → Θc → velocity β Katharina Müller autumn 14 8 Thr e s hol dChe r e nkovCount e r Allows separation of particles with same momenta but different masses Assume separation of two particles p1=p2 m2>m1 Threshold: choose radiator such that β1>1/n and β2<1/n 1 2 = , rsp. n require: particle 2 does not radiate: 2= 1 1−1/ n 2 2 2 n = 2 2 2 −1 Diffraction index needs to be adjusted, stabilised with high accuracy! Length of radiator: lighter particle emits 490 sin2Θc photons per cm 2 c 2 2 −1 particle 1: # photons: N =490 2 m1 −m 2 [cm ]L q p L: length of radiator, q: quantum efficiency, depends on energy, thickness and type of material Katharina Müller autumn 14 9 Thr e s hol dChe r e nkovCount e r Combination of several threshold Cherenkov counters Best one for the pi x x x x x Aerogel n=1.025 Neopentan 1.0017 x K p Ar-Ne 1.000135 K-p-π Separation up to roughly 100 GeV in beam with xed momenta Beta_pi > Beta_K > Beta_p They have same momentum p p=m\beta \gamma c m_pi > m_K > m_p n_pi > n_K > n_p Katharina Müller autumn 14 10 Radi at or s transparent material: solids, liquids, gases material n-1 βc θc solid natrium Lead sulte Diamond Zinc sulte silver chloride Flint glass Lead crystal Plexiglass Water Aerogel Pentan Air He 3.22 2.91 1.42 1.37 1.07 0.92 0.67 0.48 0.33 0.025-0.075 1.7 10-3 2.9 10-4 3.3 10-5 0.24 0.26 0.41 0.42 0.48 0.52 0.60 0.66 0.75 0.93-0.98 0.9983 0.9997 0.999971 76.3 75.2 65.6 65.0 61.1 58.6 53.2 47.5 41.2 12.6-21.5 6.7 1.38 0.46 Photons/cm (max) 462 457 406 402 376 357 314 261 213 24-66 7 0.3 0.03 Si l i c aAe r oge l DiPraction index of gas radiators may be modied with pressure (n-1) = (n0-1)p/p0 Katharina Müller autumn 14 11 Che r e nkovCount e r → tune refraction index by setting pressure Example: CO2- pressure for Cherenkov radiation vs p radiation Mazziotta, GLAST (2005) no radiation Katharina Müller autumn 14 12 Di #e r e nt i alChe r e nkovCount e r s Measure Cherenkov angle → direct measurement of β → select particles in velocity interval Minimum: Cherenkov requirement min = 1 n Maximum: total refraction 1 sin = , n cos = 1 1 max = n n 2−1 quartz radiator Example: diamond n=2.42 βmin= 0.413 βmax = 0.454 ● ● Used for particle id in beam with xed momentum Particles need to be parallel to axis velocity resolution up to Δβ/β= 10-5 Pion/K separation up to 100 GeV very precise timing signal Discovery of anti-proton in 1955 by Chamberlain, Segre et. al. at Berkeley. Nobel Prize in 1959, Physical Review Letters , Nov. 1, 1955 Katharina Müller autumn 14 13 Ri ngI magi ngChe r e nkovCount e r( RI CH) project cone of Cherenkov light onto matrix of photon detectors (Multiwire proportional chambers, photomultipliers, TPCs ) signals on matrix form a ring centre: direction radius: velocity incoming particle Matrix of photon detectors measured photons radiator with diffraction index n Geometrical focussing: radiator thickness small wrt. distance to photon detectors Katharina Müller autumn 14 14 Ri ngI magi ngChe r e nkovCount e r( RI CH) Spherical mirror (Radius Rs ) with centre at interaction vertex Focal width Rs/2 ● Cherenkov light is reYected onto photon detector at radius RD ● ● radiator between Rs and RD = Rs/2 ● measured radius rc depends on β rc = f θc= ● Rs θ 2 c cos θc = 1 →β=1/(n cos(2 r c / R s)) nβ momentum known → particle ID p=γ m0 β c → ● p √ 1−β2 m= cβ Detector RD Mirror Rs r c Radiator particle known → measure momentum p=γ m0 β c → Δp Δγ 2 Δβ =γ β ≃ γ p First used by DELPHI (LEP) W. Adam et al Nucl. Instr. And Meth in Phys. Res A 343 (1994) 68 Katharina Müller autumn 14 15 De t e c t i onofChe r e nkovl i ght Energy of Cherenkov photons: eV → photoePect dominates, → strong Z and E dependence PhotoePect: Photon is absorbed, transmits energy onto electron. Photoemission threshold Wph of various materials TMAE,CsI Ultra Violet (UV) Visible Bialkali Infra Red (IR) GaAs Multialkali TEA 12.3 4.9 3.1 2.24 1.76 1.45 E [eV] 100 250 400 550 700 850 λ [nm] Ideal photo cathode: absorbs all γ, emits all electrons Katharina Müller autumn 14 19 De t e c t i onofUVphot ons Admixture of organic vapour: quantum efficiency vs wave length TMAE high eZciency for small λ BUT: radiation damage Energy[eV] 9,0 8,5 0,6 8,0 7,5 7,0 6,5 6,0 0,6 transparency cutoff of fused silica Quantum efficiency 0,5 2 dN 1 d 2 =2 z 1− Reminder: # Photons: ∫ dx n 2 2 2 5,5 TMAE TEA 0,4 0,4 0,3 0,3 0,2 0,2 0,1 0,1 0,0 0,0 140 150 160 170 180 190 200 210 220 Wavelength [nm] important to detect photons at small λ 1 Katharina Müller autumn 14 0,5 20 230 De t e c t i onofChe r e nkovl i ghtI I Photo cathodes: thin layer of metal or semi-conductor with low work function( Austrittsarbeit) typical material, CSI: Threshold 6 eV =210 nm ● high QE ● stable in air ● cathode should not charge up eV photons 0.4 PC32 (@STAR) PC33 PC34 PC35 PC37, PC39 PC38 CsI photocathode QE 0.35 0.3 0.25 Alice CSI cathode: average quantum eZciency 15% (155-210 nm) 0.2 0.15 Production: stability, reproducibility diZcult for a long time today: reproducible quality 0.1 0.05 0 5.5 6 6.5 7 7.5 8 photon energy [eV] Katharina Müller autumn 14 21 De t e c t i onofChe r e nkovl i ght Position sensitive gas detectors (MWPC, TPC) or photomultiplier De l phi Admixture of TMAE Sensitivity in UV region Disadvantage: slow! long drift time μs Ageing problems due to TMAE Al i c e ALICE MWPC: multiwire proportional chamber with photocathode fast signal < 100 ns Katharina Müller autumn 14 22 De t e c t i onofChe r e nkovl i ght :phot omul t i pl i e r For example: SuperKamiokande, Ice Cube Medicine: Silicon photomultipliers (SiPM): avalanche photodiode array on common Si 20-100 μm. Katharina Müller autumn 14 23