ESERCIZI SVOLTI SUL CALCOLO DEI LIMITI 1. Calcola i seguenti limiti: lim x→4 log 2 x + 1 = 3 log 4 x lim sen ( 3 x + 1 − 1 ) = x → −1 lim log (1 − log x ) = x →1 log 3 x − 1 = lim cos x→3 x+3 lim x→2 2x −1 lim = x → 1 log x − 3 lim x→2 lim x→2 log 3 x + log 3 log ( x 2 + x − 5 ) = 2x − 1 lim x + log 2 x = limπ x→ lim log ( cos x ) = 2. 2 lim x→2 x→0 x →1 x−2 x→3 e cos x + sen x lim = x →π 1 + tg x lim x2 + x + 1 = cos ( π x ) 2 x − 2 + 2x = 1 + log x 3 x = sen x + cos x = 2x 2 x2 − x + 1 = 22 x − 2 x + 2 lim ( sen x + 2 cos x − 1) = x →π Calcola i seguenti limiti, risolvendo le forme indeterminate corrispondenti: Forma indeterminata del tipo − − lim ( x → +∞ lim x → +∞ +∞ − ∞ x+7 − x 2x −1 − x − 5) = 2x + 2 = − − lim ( x → +∞ x2 + 1 − x − 4) = lim ( x 4 − x 2 − 9 ) = x → −∞ − Forma indeterminata del tipo − − − ∞ ∞ x6 − 3 x4 = 2 x2 − 2 x + 1 − lim 2 x5 − x3 + x4 = x5 − 6 x 2 − lim x2 − 2 x + 3 x3 = 2 x4 − x2 lim x → −∞ x → +∞ x → +∞ − lim x → +∞ lim x → −∞ lim x → +∞ 4 x2 − 3 = x +1 3x − 2 x2 − x + 1 x3 + x + 2 2 x2 + 1 = = Forma indeterminata del tipo − 3. lim x → −5 0 0 x 2 + 3 x − 10 = x 2 − 25 − Determina gli asintoti delle seguenti funzioni, dopo averne determinato il dominio: − y= 2 x2 + 3 x x2 − 1 − y= 2x + 5 x − 4x + 4 − y= 2 x2 + 3 x x −1 − y= x2 − 4 x x2 − 5 x + 4 − y= x3 + 3 x x−3 2 lim x → −2 3 x 2 + x − 10 = x 2 − 5 x − 14