Chimica Fisica II-Corso di Laboratorio Corso di Chimica Fisica II Corso di Laboratorio Determinazione della conduttività molare limite di un elettrolita forte Christian Durante E-mail: [email protected] Tel. 049-8275112 Zona quadrilatero ufficio 00 215 02 142 (orario di ricevimento: tutti I giorni previo appuntamento via mail o telefono) anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 I 1 Chimica Fisica II-Corso di Laboratorio Origine della conducibilità in solidi e soluzioni: • Conduttori ionici ed elettronici • Conduzione nei solidi • Conduzione in soluzioni elettrolitiche • Misura della conducibilità specifica • Non idealità delle soluzioni elettrolitiche ed effetto delle interazioni ioniche (Debye-Hückel) anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 2 Chimica Fisica II-Corso di Laboratorio Origine della conducibilità in solidi e soluzioni: Il trasporto di una specie in soluzione avviene attraverso tre meccanismi • diffusione (driving force: un gradiente di potenziale chimico, cioè di concentrazione), • migrazione elettrica (driving force: un gradiente di potenziale elettrico Φ), • convezione (driving forces: temperatura, agitazione, ecc.) Il flusso complessivo di una specie ionica in soluzione è dato dall’equazione di Nernst-Planck Φ In questa esperienza siamo interessanti alla migrazione elettrica ed alla grandezza ad essa correlata, la conduttività o conducibilità specifica anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 3 Chimica Fisica II-Corso di Laboratorio Conduttori ionici ed elettronici Conduttori di prima specie o elettronici: i portatori di cariche elettriche sono gli elettroni (come nei metalli, i semiconduttori e composti del carbonio come la grafite, il glassy carbon, il diamante drogato, materiali polimerici). Il loro comportameno di distingue in base alla temperatura Metalli 1 con a > 0 La resistenza aumenta all’aumentare di T (maggiore probabilità di collisioni tra elettroni ed atomi) Semiconduttori con a > 0 La resistenza diminuisce all’aumentare di T anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 4 Chimica Fisica II-Corso di Laboratorio Conduttori ionici ed elettronici I superconduttori sono solidi che conducono elettricità e che hanno resistenza zero (ρ = 0, ridotta probabilità di collisione degli elettroni) quando portati a bassissime temperature ( < 100 K). anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 5 Chimica Fisica II-Corso di Laboratorio Conduttori ionici ed elettronici conduttori ionici o di II specie, i portatori di cariche elettriche sono sono gli ioni, generalmente sia positivi che negativi soluzioni elettrolitiche, i cristalli ionici, gli elettroliti fusi, in particolare i cosiddetti liquidi ionici, gli elettroliti polimerici). La conducibilità di una soluzione elettrolitica, (intesa come capacità di condurre la corrente) dipende da diversi fattori quali: • concentrazione degli ioni in soluzione, • carica ioniche, • la velocità di migrazione degli ioni in soluzione o mobilità, • Temperatura ( agisce sulla viscosità e capacità coordinante del solvente), • pressione, • viscosità del solvente, • natura dielettrica del solvente anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 6 Chimica Fisica II-Corso di Laboratorio Conduttori elettronici Le proprietà dei conduttori elettronici sono descritte dalla teoria delle bande. I livelli energetici di atomi isolati hanno valori ben definiti e gli elettroni riempiono i livelli più bassi in accordo con le leggi della quantomeccanica. Quando gli atomi non sono più isolati, ma aggregati tra loro, vi è un’interazione tra gli orbitali atomici dei singoli atomi, con formazione di orbitali molecolari e di nuovi livelli energetici, differenti da quelli degli atomi isolati. L’aumento del numero di atomi aumenta il range di energia spaziato dai livelli energetici oltre che la loro densità anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 7 Chimica Fisica II-Corso di Laboratorio Conduttori elettronici I livelli energetici si combinano in bande energetiche di ampiezza finita, all’interno delle quali sono collocati un numero molto grande di orbitali, i cui livelli energetici sono discreti, ma il salto energetico tra un orbitale e l’altro è estremamente piccolo. Gli orbitali s danno origine a bande di tipo s mentre orbitali di tipo p danno origine a bande di tipo p e queste due bande potranno essere parzialmente sovrapposte o separate da un gap energetico anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 8 Chimica Fisica II-Corso di Laboratorio Conduttori elettronici Gli orbitali atomici che ospitano gli elettroni di valenza danno origine a due bande: la banda di valenza, costituita dagli orbitali ad energia minore e la banda di conduzione, costituita dagli orbitali molecolari ad energia maggiore. T = 0 K il livello di Fermi rappresenta l’HOMO ovvero il livello energetico (N/2) a più alta energia occupato; per T > 0 la presenza di orbitali vuoti (di valenza o di conduzione) adiacenti al livello di Fermi consente la promozione di elettroni (Ec< KBT) e quindi un elevata mobilità degli elettroni stessi che giustifica la conducibilità elettrica anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 9 Chimica Fisica II-Corso di Laboratorio Conduttori elettronici In relazione all’energia che le contraddistinguono le due bande possono essere parzialmente sovrapposte (conduttori) oppure saranno separati da un piccolo gap energetico (Ec~ KBT) a cui non corrisponde alcun orbitale (semiconduttori). Se il gap energetico è elevato allora si parla di isolante (Ec > KBT) anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 10 Chimica Fisica II-Corso di Laboratorio Conduttori ionici- soluzioni elettrolitiche Una soluzione elettrolitica è formata da un solvente molecolare e dagli ioni in esso disciolti. In questo caso la conducibilità elettrica raggiunge valori anche elevati (pur sempre largamente inferiori a quelli dei conduttori elettronici di tipo metallico), grazie alla buona mobilità degli ioni Esistono due tipi di elettroliti: • elettroliti ionofori sono i cristalli ionici, cioè quelle sostanze che sono costituite da ioni già nel loro stato naturale (NaCl) ⟶ • elettroliti ionogeni sono invece sostanze costituite da molecole neutre che producono ioni attraverso una reazione chimica con il solvente nel quale vengono disciolti ! ⟶ "! anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 11 Chimica Fisica II-Corso di Laboratorio Conduttori ionici- soluzioni elettrolitiche Moto di tipo Browniano: Le particelle di solvente e di soluto si scontrano in continuazione e si muovono stocasticamente, con velocità differenti, in varie direzioni. Si deve immaginare il solvente come una struttura quasi cristallina in cui le specie disciolte vibrano intorno a posizioni di equilibrio. La conduzione è associate ai salti degli ioni in una posizione adiacente della struttura quasi cristallina, qualora ci sia uno spazio disponibile sufficiente. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 12 Chimica Fisica II-Corso di Laboratorio Conduttori ionici- soluzioni elettrolitiche L’interazione solvente-soluto è definita in generale solvatazione, idratazione nel caso in cui il solvente sia l’acqua. In generale si tratta di interazioni di tipo ione dipolo o di tipo van der Waals. sfera primaria di solvatazione: guscio di molecole di solvente fortemente legate allo ione da costituire un tutt’uno (per cui gli ioni si muovono assieme alla sfera primaria e, di fatto, le dimensioni idrodinamiche sono quelle degli ioni solvatati) anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 13 Chimica Fisica II-Corso di Laboratorio Conduttori ionici- soluzioni elettrolitiche La prima teoria quantitativa di descrizione delle soluzioni elettrolitiche, cioè di soluzioni di sostanze in grado di condurre l'elettricità, è stata formulata da Svante Arrhenius (1883-87). La teoria è stata in seguito sviluppata da Ostwald, Walden e altri. Tale teoria è basata su tre postulati 1. Alcune sostanze, dette elettroliti, sono in grado di dissociarsi in particelle con carica opposta detti ioni quando siano disciolte in opportuni solventi (spesso acqua). Il numero, il segno e la grandezza della carica (z) degli ioni dipende dal tipo di elettrolita. #$ $ ⇌ ' # ( ' #( ⇌ ⇌ *!+ ⇌ 2 anno accademico 2012-2013 2 *!+ , - , - Principio di elettroneutralità Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 14 Chimica Fisica II-Corso di Laboratorio Conduttori ionici- soluzioni elettrolitiche 2. La dissociazione degli elettroliti non è completa, solo una certa parte delle molecole disciolte è presente come ioni. La frazione del numero totale di molecole disciolte che è dissociata in ioni all'equilibrio, è il grado di dissociazione α /01234 514 5 5664 5 72 . /01234 514 5747 5 Il grado di dissociazione a temperatura e pressione costante dipende dalla natura dell’elettrolita e dalla sua concentrazione. Il grado di dissociazione è tanto maggiore quanto è diluita la soluzione tendendo al valore limite 1 quando la concentrazione tende a zero (diluizione infinita). Per elettroliti forti α ≅ 1 per elettroliti deboli α tende ad 1 solo per concentrazioni molto diluite. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 15 Chimica Fisica II-Corso di Laboratorio Conduttori ionici- soluzioni elettrolitiche Nel caso di un elettrolita binario si ha la dissociazione in un catione con carica positiva e un anione con carica negativa : 89 8: (9 ⇄ (: La reazione di dissociazione è regolata da una costante di equilibrio che dipendente dalle attività delle specie solvatate all’equilibrio <=> 89 ? A9 @ 8 :: ∙ ?CA ?@D9 CD: Se assumiamo un comportamento ideale della soluzione e quindi che i coefficienti di attività siano unitari, allora la molalità può essere 8: sostituita dalla molarità 9 9 8 9 <=> anno accademico 2012-2013 ( ( 89 8: Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 16 Chimica Fisica II-Corso di Laboratorio Conduttori ionici- soluzioni elettrolitiche Tenendo presente che ( 9 . ; (: . ; 89 8: . 1 . si ottiene la costante di equilibrio in funzione del grado di dissociazione 89 ∙ . 89 8: 89 8: G <=> 1 . se faccio riferimento ad un elettrolita binario ottengo legge di diluizione di Ostwald . <=> < 1 . . 1 . Che mostra come il grado di dissociazione dipende dalla concentrazione e tende a 1 quando c tende a 0 (cioè per diluizione infinita) anno accademico 2012-2013 ∙ 8F Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 17 Chimica Fisica II-Corso di Laboratorio Conduttori ionici- soluzioni elettrolitiche Nella pratica, si definiscono elettroliti forti le sostanze che hanno . 1 a concentrazioni ordinarie, mentre si definiscono elettroliti deboli le sostanze per le quali . è piccolo a concentrazioni ordinarie e tende a 1 solo per concentrazioni molto basse. 3. Non ci sono interazioni tra gli ioni e gli elettroliti si comportano come un sistema ideale. Questo assunto non è esplicitamente indicato ma è conseguenza di tutte le relazioni quantitative ricavate da questa teoria. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 18 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche Per il trasporto molecolare monodirezionale vale una legge empirica del tutto generale: il flusso della proprietà è direttamente proporzionale alla driving force, cioè alla causa che provoca il movimento della proprietà nello spazio. Quindi il flusso è la risposta di una specie i-esima sottoposta ad una forza HIΦ H Φ Questa legge del tutto generale è valida oltre che per il trasporto di materia, anche per il calore e la quantità di moto. La costante di proporzionalità tra flusso e driving force è detta conducibilità specifica o conduttività del conduttore rispetto alla proprietà oggetto del trasporto ed è l’inverso della sua resistività anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 19 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche Il flusso viene definito come la quantità di materia (misurata in grammoparticelle, cioè in moli di particelle) che attraversa una sezione unitaria (ortogonale al gradiente) nell’unità di tempo mentre la driving force è espressa dall’opposto del gradiente della grandezza JK IΦ che fisica JL provoca il movimento della proprietà in questione. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 20 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche La relazione tra flusso e driving force che lo origina può essere ricavata in termini del tutto generali con la seguente considerazione. La velocità delle particelle (vi) di soluto dipende: -dimensione (raggio idrodinamico) -forma -interazione con solvente -Interazione del solvente Se considero trascurabile l’interazione tra le particelle e che la forma delle molecole possa essere considerata sferica allora il movimento delle particelle del soluto può essere ipotizzato simile a quello di particelle sferiche, di raggio 3 , in un mezzo viscoso con coefficiente di viscosità M. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 21 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche La forza N che agisce su una particella induce un’accelerazione per cui la particella si muoverà di moto uniformemente accelerato lungo la direzione della forza agente. A questo moto si oppone la resistenza dovuta all’attrito prodotto dalla viscosità della soluzione, che genera una forza resistente (con la stessa direzione ed il verso opposto a quello del moto) quantificata dalla legge di Stokes: anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 22 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche La forza resistente viene quantificata dalla legge di Stokes come funzione delle proprietà geometriche della particella, della sua velocità e dalla viscosità del solvente: NW 6YM3 La velocità v0 in condizioni stazionarie cioè quando la risultante delle due forze è nulla è definita dalla legge di Stokes NW OP N QR STUVR fr è la forza di attrito fi è la forza agente sulla particella anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 23 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche A tale velocità stazionaria corrisponde un flusso Nel caso dell’azione di un campo elettrico, il flusso della specie ionica i-esima è generato dalla forza elettrica agente che vale N z \Z3 ] per una grammoparticella (mole), N z Z3 ] ( zi = numero di carica, e è la carica elementare, Z3 Φ = gradiente del campo elettrico, F = e⋅⋅NA, è la costante di Faraday) anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 24 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche Quindi se considerando il caso normale di un monodirezionale, si può quindi scrivere: N 6YM3 z Z3 ] 6YM3 ^R Dove: ^R ∗ ^R anno accademico 2012-2013 ∗z ] gradiente z ] 6YM3 ^R ] 1 la mobilità assoluta dello ione i-esimo 6YUVR 0∗ è la mobilità ionica elettrochimica cioè la velocità in presenza di un gradiente di potenziale unitario Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 25 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche Dal punto di vista elettrico la grandezza correlata a questo flusso di materia è la densità di corrente j, ossia il flusso di carica elettrica. . c a e la seconda legge di Ohm ; Ricordando la prima legge ` b d Posso esprimere la densità di corrente come: ] ]* f ] g H Hf * * g H ] Jae JL Dove è il gradiente di potenziale che definisce il campo elettrico f , mentre il coefficiente fenomenologico κ, è la conducibilità elettrica specifica, cioè il reciproco della resistività ρ anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 26 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche Utilizzando la legge di Faraday h /∙ , e la definizione di Ji Jk densità di corrente g è possibile scrivere la seguente dJj dJj equivalenza tra la densità di corrente e il flusso di massa delle specie cariche: g l pertanto il contributo di uno ione i-esimo alla densità di corrente totale è 0 g ∗ ] ] 0 La densità di corrente totale, data dal contributo di tutti gli ioni presenti in soluzione, è data da g anno accademico 2012-2013 ∑ ∑0 Jae JL Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 27 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche Da cui si esplicita la definizione di conducibilità specifica totale: H l0 E si esprime in Ω-1cm-1 oppure S/cm. In questa equazione la concentrazione è espressa in g/cm3, se volessimo esprimerla nella più comune forma di g/L si dovrà dividere per un fattore 1000: n 1000 l0 La conduttività è una grandezza intrinsecamente non selettiva ma “integrale” perché dipende dai prodotti (carica × concentrazione × mobilità) di tutti gli ioni liberi nella soluzione studiata anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 28 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche numero di trasporto rappresenta la frazione di cariche elettriche (cioè della corrente elettrica) trasportata da una singola specie ionica all’interno di una soluzione elettrolitica. ti = ui zi ci ∑u j zj cj j In un campo elettrico tutte le specie ioniche si mettono in moto ordinato lungo le linee di forza del campo elettrico. Ioni di carica opposta si muovono nel verso opposto, per cui tutte le specie ioniche contribuiscono additivamente al trasporto di cariche elettriche, cioè all’intensità di corrente complessiva I. Ciascuna specie ionica dà però un contributo specifico che dipende dalla sua concentrazione, dalla sua carica e dalla sua mobilità. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 29 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche (9 (: 89 8: Se considero un elettrolita conducibilità specifica totale sarà H Poiché come a concentrazione allora la . 0 0 1000 posso esprimere la conducibilità specifica H . 0 1000 0 la conducibilità specifica κ dipende dalla concentrazione sia direttamente sia indirettamente attraverso α e la mobilità 0 anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 30 Chimica Fisica II-Corso di Laboratorio Conducibilità delle soluzioni elettrolitiche Sperimentalmente si osserva che per elettroliti forti: la curva n vs c presenta un massimo poiché all’inizio predomina la crescita di (tratto ascendente della curva), poi il calo di α ed 0 con la concentrazione (tratto discendente della curva); elettroliti deboli: le mobilità sono circa costanti, la crescita della concentrazione e del grado di dissociazione si compensano per cui la curva n vs c ha un andamento pianeggiante. Tali andamenti non sono previsti dalla teoria di Arrhenius che non prevede che anche le mobilità ^ dipendano dalla concentrazione. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 31 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica Dal punto di vista sperimentale un conduttimetro misura la resistenza (Ω) di una soluzione elettrolitica, il cui inverso è la conduttanza (S[iemens]= Ω-1); essa dipende non solo dalle caratteristiche della soluzione, ma anche da quelle della cella conduttimetrica usata per effettuare la misura, rappresentate dalla costante di cella (cm-1). Dalla seconda legge di Ohm n κ∙r Possiamo esprimere la conduttanza in funzione della conducibilità specifica n e del parametro geometrico χ associato alla costante di cella anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 32 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica Nelle misure conduttimetriche la cella conduttimetrica viene calibrata utilizzando un campione a conduttività nota κ* (tipicamente KCl, i dati si possono trovare in un Handbook of Chemistry and Physics) Dalla regressione lineare dei dati di κ*/T si estrapola il valore di κ* alla temperatura alla quale viene determinata ∗ anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 33 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica Quindi si determina la costante di cella χ espressa in cm-1 dalla relazione ∗ s n∗ dove C* è la conduttanza della soluzione standard Se il campione incognito quindi ha una conduttanza nella stessa cella conduttimetrica, la conduttività è Valore ricavato sperimentalmente n dalla soluzione incognita t Valore ricavato dalla soluzione standard di KCl anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 34 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica La conduttività di una soluzione dipende dal numero degli ioni presenti; per questo si definisce convenzionalmente una conduttività molare Λm n uv fisicamente, Λ x coincide con la conduttanza di 1 cm3 di soluzione 1M dell’elettrolita in esame tuttavia nella pratica comune c che indica la concentrazione molare dell’elettrolita viene espressa in moli/dm3. per questo viene si moltiplica per un fattore 1000. Λx n 1000 La conduttività molare così espressa assume questa unità di misura Ω-1cm2 mol-1 anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 35 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica Per confrontare tra loro le conduttività di elettroliti con diversa valenza è possibile esprimere la conduttività in modo indipendente dalla stechiometria dell’elettrolita a cui si riferisce. Dato che per il principio di elettroneutralità deve valere dove è la “valenza” dell’elettrolita, si definisce la conduttività equivalente dell’elettrolita (espressa in Ω-1 cm2 g-equiv-1) come: y Λx n 1000 z{|8 Ricordando che la conducibilità specifica n G questa espressione per la conduttività equivalente Λ anno accademico 2012-2013 . 0 0 0 ottengo 0 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 36 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica Poiché Λ N . essa varia con la concentrazione e con la temperatura. Nel caso in cui le soluzioni elettrolitiche fossero “ideali”, la conduttività equivalente non dovrebbe dipende dalla concentrazione degli elettroliti. Pertanto la dipendenza di Λ dalla concentrazione dovrebbe dipendere solo da attraverso . e tendere ad un valore limite a diluizione infinita, cioè lim Λ lim Λ Λ |→ {→G Che permette di ricavare la legge della migrazione indipendente di Kohlrausch Λ 0 0 • • Dove è stata definita la conduttività equivalente a diluizione infinita in funzione delle conduttività equivalente dei singoli ioni. • 0 anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 37 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica La legge della migrazione indipendente stabilisce che la conduttività espressa come conduttività molare o equivalente di un elettrolita in una soluzione ideale o infinitamente diluita è la somma delle conduttività equivalenti degli ioni che esso genera ed indipendenti dall’elettrolita di partenza. Λ anno accademico 2012-2013 0 0 • • λ λ H H+ 349.82 OH− 198.3 Li+ 38.68 F− 55.4 Na+ 50.20 Cl− 76.35 K+ 73.50 Br− 78.14 Rb+ 67.81 I− Cs+ NH4+ 76.84 77.28 NO3 − 71.46 73.59 ClO4− 67.35 COO− Ag+ 61.98 CH3 1/2Be2+ 45.0 1/2SO42− 1/2Mg2+ 40.90 80.03 53.08 1/3Fe(CN)6 3− 100.9 1/2Ca2+ 59.50 1/4Fe(CN)64− 110.5 1/2Sr2+ 59.45 1/2Ba2+ 63.62 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 38 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica Esempio Valutare la differenza tra le Λ misurate per due sali di potassio e sodio che hanno in comune l’anione, si ottiene sempre lo stesso valore T=25°C yP a yP a yP a KCl 150 KNO3 145 KSO4 153 NaCl 127 122 Na2SO4 130 ‚yP NaNO3 23 23 23 Si noti che l’indipendenza dei contributi ionici da Λ è sinonimo di idealità della soluzione elettrolitica, ovvero di assenza di interazioni tra gli ioni, che è una ipotesi ammissibile solo per concentrazioni tendenti a zero anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 39 Chimica Fisica II-Corso di Laboratorio Misura della conducibilità specifica La conduttività molare di un elettrolita dovrebbe essere quindi indipendente dalla concentrazione, ma nella realtà delle prove sperimentali questo non accade. Misure di dipendenza dalla concentrazione delle conduttività molari mostrano come sia possibile distinguere due comportamenti distinti per elettroliti forti ed elettroliti deboli. In termini di conduttività molare, decresce negli elettroliti forti Λ x leggermente e linearmente all’aumentare della concentrazione, mentre per gli elettroliti deboli la Λ x decresce rapidamente fino a valori molto bassi all’aumentare della concentrazione. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 40 Chimica Fisica II-Corso di Laboratorio Legge di Kohlrausch L'andamento della funzione Λx / 4/ . rende problematica un'agevole misura di Λ per qualunque tipo di elettrolita, perché non è semplice estrapolare con precisione l'intercetta di una curva con l'asse delle ordinate. Fortunatamente esiste, per gli elettroliti forti una relazione: uv Λx … scoperta empiricamente da Kolhrausch. Λ x è chiamata conduttività molare limite ed è la conduttività molare quando la concentrazione tende a zero, cioè quando gli ioni non interagiscono, Il coefficiente dipende dalla stechiometria dell’elettrolita. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 41 Chimica Fisica II-Corso di Laboratorio Modello teorico di Debye-Hückel Questa relazione è stata dimostrata per via teorica da Onsager, sulla base della teoria di Debye e Huckel. Tale relazione, detta equazione di Onsager, ha la seguente forma: Λx Λx †Λ Nel modello teorico di Debye-Hückel ogni ione è circondato da un'atmosfera ionica (statistica) che ha una carica complessiva opposta a quella dello ione centrale anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 42 Chimica Fisica II-Corso di Laboratorio Modello teorico di Debye-Hückel • In soluzione infinitamente diluita, gli ioni singoli sono così distanti l'uno dall'altro che le forze interioniche sono praticamente nulle e non si ha formazione dell'atmosfera ionica. • Poichè gli elettroliti forti sono completamente dissociati tutte le variazioni della conduttanza equivalente sono causate dalla variazione dell’energia di interazione. La deviazione dell’idealità delle soluzioni elettrolitiche è dovuta all’interazione coulombiana tra gli ioni di carica opposta che si attraggono, pertanto anioni e cationi non sono distribuiti in modo uniforme in soluzione: gli anioni si troveranno più facilmente vicino ai cationi e viceversa. Di conseguenza la soluzione rimane elettricamente neutra ma intorno a ciascun ione ci sarà un eccesso di controioni, ovvero di ioni con carica opposta (atmosfera ionica). anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 43 Chimica Fisica II-Corso di Laboratorio Modello teorico di Debye-Hückel L’atmosfera ionica, alla presenza di un campo elettrico, non è più sferica, ma viene deformata in quanto gli ioni si muovono in una precisa direzione e i controioni circostanti non riescono ad aggiustare istantaneamente la loro posizione. L’effetto detto di rilassamento è uno spostamento del centro di carica dell’atmosfera subito dietro allo ione. Poiché le cariche sono opposte, si ha un ritardo nel moto dello ione stesso. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 44 Chimica Fisica II-Corso di Laboratorio Modello teorico di Debye-Hückel Gli ioni dell'atmosfera ionica sono anch'essi solvatati, per cui il loro movimento determina un flusso consistente di liquido in senso opposto allo ione. Quest'ultimo perciò si trova a muoversi contro corrente rispetto all'ambiente che lo circonda, incontrando un'ulteriore resistenza al proprio moto (effetto elettroforetico), e di conseguenza la mobilità degli ioni e le loro conducibilità risultano ridotte anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 45 Chimica Fisica II-Corso di Laboratorio Modello teorico di Debye-Hückel Globalmente, combinando i contributi dei due effetti sopra descritti, il modello di Debye-Hückel-Onsager prende la forma seguente: Λx Λx †Λ in cui A e B sono parametri che dipendono dalla temperatura, dal solvente e dallo specifico elettrolita. Il termine A deriva dall’effetto elettroforetico, mentre il termine in B deriva dall’effetto del tempo di rilassamento dell’atmosfera ionica G/ "2 G/ "2 2 2 † ‰ ∙ ∙ 3YM Yˆ 3YM ˆ doveε è la permittività elettrica del solvente; η è la viscosità, q è un coefficiente che dipendente dal tipo di elettrolita che vale 0.5 per elettroliti binari. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 46 Chimica Fisica II-Corso di Laboratorio Modello teorico di Debye-Hückel Questo modello riproduce correttamente sia il modo in cui Λ tende a Λ per c 0 , sia la pendenza della retta, però esso fallisce oltre una certa concentrazione. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 47 Chimica Fisica II-Corso di Laboratorio Modello teorico di Debye-Hückel In tale regime di non-idealità delle soluzioni elettrolitiche (causata ad esempio dalla formazione di coppie ioniche) la conduttività decresce in modo meno marcato. In questo caso per il fitting dei dati si utilizzano equazioni empiriche del tipo: Λ| Λ •| Š 1 ‹ Š ‹Λ • Œ Œ Ž 4Z • 2 Il pregio delle equazioni empiriche è che esse fittano bene i dati, ma d’altro canto manca un modello teorico che interpreti i coefficienti che compaiono in esse. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 48 Chimica Fisica II-Corso di Laboratorio La misura sperimentale della conduttività di soluzioni elettrolitiche La misura della conduttività si riduce sostanzialmente a misure di resistenza. Nel caso di conduttori di prima specie, il metodo di misura classico si serve del ponte di Wheatstone: Una cella conduttometrica per soluzioni elettrolitiche, è composta da conduttori di seconda specie e da conduttori di prima specie: gli elettrodi. I contatti tra gli elettrodi metallici e la soluzione non sono ideali, ossia vi è generalmente un elevato potenziale di interfaccia. Inoltre il passaggio di corrente, necessario alla misura di conducibilità genera fenomeni di elettrolisi e di polarizzazione degli strati di soluzione a contatto con gli elettrodi anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 49 Chimica Fisica II-Corso di Laboratorio Ponte di Kohlrausch le misure in corrente continua introdotte da Kohlrausch, permettono di compensare gli effetti di elettrolisi e gli effetti di polarizzazione della soluzione in prossimità degli elettrodi. Lo schema del ponte di Kohlrausch è identico a quello del ponte di Wheatstone, ma qui una delle resistenze è sostituita da una cella elettrolitica in cui si inserisce la soluzione di cui si vuole misurare la resistenza. Il ponte è alimentato in corrente alternata (o impulsata) di alta frequenza (circa 1000 Hz), La condizione di bilanciamento del ponte è raggiunta come condizione sulle impedenze vettori) dei quattro bracci, utilizzando un condensatore variabile e una resistenza variabile anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 50 Chimica Fisica II-Corso di Laboratorio La misura sperimentale della conduttività di soluzioni elettrolitiche L’intefaccia elettrodo soluzione è assimilabile ad un circuito RC cioè con un contributo resistivo ed uno capacitivo; in un circuito in corrente alternata la resistenza al trasporto di carica è rappresentato dalla grandezza fisica impedenza rappresentata nel piano cartesiano da un numero complesso •‘ ’ 1 ’“ ’ “ g 1 ’“ ad elevate frequenze (ω ∞) la parte immaginaria dell’impedenza si annuilla e l’impedenza totale tende a coincidere con la caduta ohmica della soluzione anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 51 Chimica Fisica II-Corso di Laboratorio La misura sperimentale della conduttività di soluzioni elettrolitiche Attualmente per la misura della conducibiliutà si utilizzano dei conduttimetri che basati sugli amplificatori operazionali, determinano direttamente la resistenza ohmica della soluzione R (e quindi il suo inverso, la conduttanza C). Gli amplificatori operazionali sono sensibili alla fase e sfruttano la differenza di fase dell' impedenza di cella: la componente resistiva (o reale) è in fase, mentre la componente capacitiva è 90 gradi fuori fase, rispetto alla corrente Iocosϖt che circola nella cella. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 52 Chimica Fisica II-Corso di Laboratorio La misura sperimentale della conduttività di soluzioni elettrolitiche L’elemento sensibile alla conducibilità è la cella conduttimetrica l’insieme comprendente i due elettrodi, generalmente di platino, attraverso i quali viene trasmessa al liquido in esame la corrente di misura, le parti isolanti in vetro o plastica che delimitano la porzione di soluzione percorsa dalla corrente di misura e infine le ulteriori parti, isolanti e non, che servono per l’unione meccanica delle parti principali, per la tenuta ermetica, per il collegamento al circuito esterno. Qualsiasi cella conduttimetrica è caratterizzata dalla propria costante di cella l/S (in cm-1) anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 53 Chimica Fisica II-Corso di Laboratorio Esperimento in laboratorio: Obiettivo: analizzare la dipendenza della conducibilità di elettroliti forti dalla concentrazione e determinare la conduttività limite equivalente e/o molare. Apparecchiatura: conduttimetro, cella conduttimetrica, termostato con termometro a 1/10 di grado, 10 matracci tarati da 50 ml, 1 matraccio tarato da 100 ml, pipette tarate da 5 ml, pipetta tarata da 10 ml, 1 bicchiere da 100 ml, 11 provettoni con tappo. Reagenti: soluzione standard di KCl 0.01 M, acqua bidistillata, un elettrolita forte a scelta (NaCl, KBr, KI, KIO3, KNO3, Na2SO4). anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 54 Chimica Fisica II-Corso di Laboratorio Esperimento in laboratorio: Si preparano 9 soluzioni a differente concentrazione partendo da due soluzioni madre 0,1 M e 0,3 M In totale ci saranno Totale: 9 soluz del sale, una di H2O bidistillata pura, 1 soluzione di KCl (per χ) Conducibilità (Valore letto istantaneamente) Determinare 10 rilevazioni concentrazione 1 H2O 2 6x10–4 M 3 1x10–3 M 4 3x10–3 M 5 6x10–3 M 6 1x10–2 M 7 3x10–2 M 8 6x10–2 M 9 0.1 M 10 0.3 M 11 Soluzione standard KCl anno accademico 2012-2013 Conducibilità Determinare 3 rilevazioni Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 55 Chimica Fisica II-Corso di Laboratorio Utilizzando le formule viste a lezione, si calcoleranno, dai dati sperimentali di conducibilità specifica (corretti per il contributo delle impurezze), i valori di conduttività molare Λ x . Tali dati verranno quindi analizzati mediante l'equazione di Kohlrausch, estrapolando così il valore della conducibilità equivalente e/o molare a diluizione infinita per l'elettrolita in esame, alla temperatura di lavoro. Alla luce del fatto che l’equazione empirica di Kohlrausch ha validità per soluzione relativamente diluite è presumibile che si possano osservare deviazioni dalla linearità dei dati ricavati dalle soluzioni più concentrate potrebbe quindi risultare necessario utilizzare una formula di regressione non lineare come quelle viste a lezione. anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 56 Chimica Fisica II-Corso di Laboratorio Utilizzando la legge della migrazione indipendente di Kohlrausch Λ 0 0 • • Verificare che il valore di Λ corrispondente all’intercetta della retta di interpolazione corrisponda appunto nel limite dell’errore sperimentale ai contributi dei singoli ioni presenti in soluzione L’elaborazione dei dati deve comprendere esplicitamente la determinazione dell’errore e come questo è stato determinato e valutato! anno accademico 2012-2013 Dr. Christian Durante email : [email protected] Web: http://www.chimica.unipd.it/electrochem/ Tel. +390498275112 57