Statistica per l'impresa - Formulario standard Formule statistica descrittiva n P x= K P xi i=1 n P 2 σ = 2 σ = n σ x x= n K P (xi −x)2 i=1 CV = j=1 x= n j=1 2 K P fj2 K K−1 e1 = range = x(max) − x(min) (Fi −Qi ) i=1 n−1 P Fi i=1 K−1 P (Fj+1 − Fj )(Qj+1 + Qj ) β= β= nσ 3 V = nij q (xi −x)(yi −y) i=1 βb0 = y − βb1 x n b2 · P (xi −x)2 β 1 (ŷi −y)2 i=1 n P (yi −y)2 = i=1 i=1 n P (yi −y)2 n P =1− i=1 M P p P It/0 = m=1 pm0 qmt q L It/0 = m=1 M P pm0 qm0 m=1 pmt qmt m=1 M P pm0 qmt m=1 M P (yi −y)2 i=1 M P pmt qm0 p L It/0 = m=1 M P pm0 qm0 (yi −ŷi )2 i=1 n P M P q P It/0 = pmt qmt m=1 M P pmt qm0 m=1 1 = ρ2xy (cj −x)3 nj j=1 χ2 /n min(H−1;K−1) σxy σx σy ρxy = n σxy σx2 K P (xj −x)3 nj ij n P · E1 j=1 0 n P R2 = K P nσ 3 2 H P K nij −n0 P σxy = n j=0 (xi −x)3 i=1j=1 βb1 = R=1− i=1 χ2 = (cj −x)2 nj j=1 dQ = Q3 − Q1 n−1 P β= σ = n j=1 n P n K P (xj −x)2 nj cj n j j=1 × 100 E1 = 1 − R= K P xj nj nσ 3 Formule probabilità e statistica inferenziale P (x) = n! π x (1 x!·(n−x)! − π)n−x X −z α2 · √σn < µ < X +z α2 · √σn X −z · q α 2 n = z α2 σδ x−µ √0 σ/ n z= rx1 −x2 n = t α2 δs n = z 2α x·(1−x) δ2 2 x−µ √0 s/ n x−π0 π0 ·(1−π0 )/n z=√ r x1 −x2 , dove s2p · n1 + n1 1 x1 −x2 r , dove xp ·(1−xp )· n1 + n1 1 m P x·(1−x) n 2 tn1 +n2 −2 = 2 σ1 σ2 + n2 n1 2 DEVT RA = q <π <X +z · tn−1 = xp = B0 − t s2p = s21 (n1 −1)+s22 (n2 −1) n1 +n2 −2 2 x1 n1 +x2 n2 n1 +n2 2 2 (xi − x) ni DEVEN T RO = i=1 α 2 ,n−2 · e−λ X −t α2 ,n−1 · √Sn < µ < X +t α2 ,n−1 · √Sn α 2 2 z= z= x·(1−x) n λx x! P (x) = ni m P P i=1j=1 · s (B0 ) < β0 < B0 + t α 2 ,n−2 m P 2 (xij − xi ) = i=1 s2i (ni − 1) · s (B0 ) B1 − t α2 ,n−2 · s (B1 ) < β1 < B1 + t α2 ,n−2 · s (B1 ) v u u u s (B0 ) = ts2 n1 + n P x2 n P (xi −x)2 s (B1 ) = i=1 tn−2 = βˆ0 −b0 s(B0 ) v u u u Ŷi ±t α2 ,n−2 ·ts2 n1 + s s2 n P (xi −x)2 2 s = (yi −ŷi )2 i=1 n−2 i=1 tn−2 = βˆ1 −b1 s(B1 ) v u u u Ŷi ±t α2 ,n−2 ·ts2 1 + (xi −x)2 n P (xh −x)2 h=1 1 n + (xi −x)2 n P (xh −x)2 h=1 2