Statistica per l`impresa - Formulario standard

Statistica per l'impresa - Formulario standard
Formule statistica descrittiva
n
P
x=
K
P
xi
i=1
n
P
2
σ =
2
σ =
n
σ
x
x=
n
K
P
(xi −x)2
i=1
CV =
j=1
x=
n
j=1
2
K
P
fj2
K
K−1
e1 =
range = x(max) − x(min)
(Fi −Qi )
i=1
n−1
P
Fi
i=1
K−1
P
(Fj+1 − Fj )(Qj+1 + Qj )
β=
β=
nσ 3
V =
nij
q
(xi −x)(yi −y)
i=1
βb0 = y − βb1 x
n
b2 · P (xi −x)2
β
1
(ŷi −y)2
i=1
n
P
(yi −y)2
=
i=1
i=1
n
P
(yi −y)2
n
P
=1−
i=1
M
P
p P
It/0
=
m=1
pm0 qmt
q L
It/0 = m=1
M
P
pm0 qm0
m=1
pmt qmt
m=1
M
P
pm0 qmt
m=1
M
P
(yi −y)2
i=1
M
P
pmt qm0
p L
It/0 = m=1
M
P
pm0 qm0
(yi −ŷi )2
i=1
n
P
M
P
q P
It/0
=
pmt qmt
m=1
M
P
pmt qm0
m=1
1
= ρ2xy
(cj −x)3 nj
j=1
χ2 /n
min(H−1;K−1)
σxy
σx σy
ρxy =
n
σxy
σx2
K
P
(xj −x)3 nj
ij
n
P
· E1
j=1
0
n
P
R2 =
K
P
nσ 3
2
H P
K nij −n0
P
σxy =
n
j=0
(xi −x)3
i=1j=1
βb1 =
R=1−
i=1
χ2 =
(cj −x)2 nj
j=1
dQ = Q3 − Q1
n−1
P
β=
σ =
n
j=1
n
P
n
K
P
(xj −x)2 nj
cj n j
j=1
× 100
E1 = 1 −
R=
K
P
xj nj
nσ 3
Formule probabilità e statistica inferenziale
P (x) =
n!
π x (1
x!·(n−x)!
− π)n−x
X −z α2 · √σn < µ < X +z α2 · √σn
X −z ·
q
α
2
n = z α2 σδ
x−µ
√0
σ/ n
z=
rx1 −x2
n = t α2 δs
n = z 2α x·(1−x)
δ2
2
x−µ
√0
s/ n
x−π0
π0 ·(1−π0 )/n
z=√
r x1 −x2
, dove
s2p · n1 + n1
1
x1 −x2
r
, dove
xp ·(1−xp )· n1 + n1
1
m
P
x·(1−x)
n
2
tn1 +n2 −2 =
2
σ1
σ2
+ n2
n1
2
DEVT RA =
q
<π <X +z ·
tn−1 =
xp =
B0 − t
s2p =
s21 (n1 −1)+s22 (n2 −1)
n1 +n2 −2
2
x1 n1 +x2 n2
n1 +n2
2
2
(xi − x) ni
DEVEN T RO =
i=1
α
2 ,n−2
· e−λ
X −t α2 ,n−1 · √Sn < µ < X +t α2 ,n−1 · √Sn
α
2
2
z=
z=
x·(1−x)
n
λx
x!
P (x) =
ni
m P
P
i=1j=1
· s (B0 ) < β0 < B0 + t
α
2 ,n−2
m
P
2
(xij − xi ) =
i=1
s2i (ni − 1)
· s (B0 )
B1 − t α2 ,n−2 · s (B1 ) < β1 < B1 + t α2 ,n−2 · s (B1 )
v 
u
u
u
s (B0 ) = ts2  n1 +
n
P

x2
n
P
(xi −x)2
s (B1 ) =

i=1
tn−2 =
βˆ0 −b0
s(B0 )
v 
u
u
u
Ŷi ±t α2 ,n−2 ·ts2  n1 +
s
s2
n
P
(xi −x)2
2
s =
(yi −ŷi )2
i=1
n−2
i=1
tn−2 =
βˆ1 −b1
s(B1 )
v 
u
u
u
Ŷi ±t α2 ,n−2 ·ts2 1 +

(xi −x)2 
n
P
(xh −x)2
h=1

1
n
+
(xi −x)2 
n
P
(xh −x)2
h=1
2