Polo per la Chimica e le Biotecnologie Ambientali e Sanitarie Istituto d’Istruzione Superiore Ada Gobetti Marchesini – Luigi Casale – Torino Orientamento Formativo in collaborazione con il Politecnico di Torino Prof. Pietro MANTELLI [email protected] LEZIONE 5 Tratta da materiale didattico predisposto dal Politecnico di Torino Orario delle lezioni: dal 11/11/2014 al 16/12/14 martedi -14:30 – 15:50 aula 2 lim http://orienta.polito.it/OrientamentoFormativo.html Orientamento Formativo 2009-2010 1 PM1 Bambini, slittini e piccole mamme stanche ovvero La Fisica del piano inclinato con attrito Attività Orientamento Formativo A.A. 2014-2015 Dipartimento di Fisica Politecnico di Torino Testi di riferimento: • P. A. Tipler, Corso di Fisica vol. I, Zanichelli, 1995 • P. Mazzoldi, M. Nigro, C. Voci, Fisica vol. I, EdiSES, 1991 Orientamento Formativo 2009-2010 2 Diapositiva 2 PM1 PIETRO MANTELLI; 11/12/2014 Il problema iniziale… Un papà ed una mamma portano i figli Andrea e Beatrice a sciare con uno slittino. Entrambi riportano i bambini in cima ad una collinetta alta 16.6 m per 10 volte, risalendo un pendio di 80 m. Il padre è molto più alto della madre. Alla fine della giornata la madre ha la netta impressione di aver lavorato più del padre… sarà vero? 16.6 m 80.0 m Orientamento Formativo 2009-2010 3 I dati del problema sono: Massa dei bambini mA = mB = 20.0 Kg 16.6 m θ 80.0 m mslittino = 5.0 Kg α Angolo θ (dipende dalla statura di chi tira): Padre θp=45° Madre θm=30° Coefficienti di attrito tra neve e slittino: dinamico µd = 0.150 statico µs = 0.300 Numero di risalite: Orientamento Formativo 2009-2010 n = 10 (a testa) 4 Questo problema semplice ci serve per illustrare un metodo generale per affrontare la risoluzione dei problemi usando le leggi di Newton. Esso è basato su alcuni passi fissi che vanno affrontati sempre nello stesso ordine. 1. Si fa un disegno chiaro che schematizza la situazione fisica spesso sostituendo agli oggetti i loro sistemi fisici equivalenti (punti materiali) h=16.6 m s=80 m Potrei schematizzare lo slittino con una sfera? Orientamento Formativo 2009-2010 5 2. Si isola il corpo (punto materiale) che interessa e si disegna un diagramma di corpo libero, indicando ogni forza esterna che agisce sullo slittino. Se più corpi sono presenti nel problema, si disegna un diagramma di corpo libero per ciascuno di essi. h α = arcsin s r T r N r fd α h s r W Dove sono applicate le forze? E’ importante saperlo? Orientamento Formativo 2009-2010 6 3. Si sceglie un sistema di coordinate appropriato per ciascun corpo y x r T r N r fd α h s r W Orientamento Formativo 2009-2010 7 3. Si sceglie un sistema di coordinate appropriato per ciascun corpo e si scrive la seconda legge di Newton ΣF = ma, poi la si scompone lungo gli assi. r r r r r r F = W + N + T + f = M a ∑ d M = m A + mB + mslittino y r T = Tx iˆ + Ty ˆj = T cos θ iˆ + T sin θ ˆj r W = Wx iˆ + Wy ˆj = − Mg sin α iˆ − Mg cos α ˆj r r f d = f d iˆ = − µ d N iˆ N = N ˆj r T r Ty N θ r fd Wx h Tx α α x Wy s r W Orientamento Formativo 2009-2010 8 3. Si sceglie un sistema di coordinate appropriato per ciascun corpo e si scrive la seconda legge di Newton ΣF = ma, poi la si scompone lungo gli assi. r r r r r r F = W + N + T + f = M a ∑ d + T cos θ − Mg sin α − f d = Ma x = 0 M = m A + mB + mslittino + T sin θ − Mg cos α + N = Ma y = 0 y r T r Ty N θ r fd Wx h Tx α α x Wy s r W Perché si è posto ax= 0 ? Orientamento Formativo 2009-2010 9 3. Si risolvono simbolicamente le equazioni così ottenute rispetto alle incognite, usando ogni altra informazione disponibile. Le incognite possono essere le masse, le componenti delle accelerazioni, o le componenti di alcune delle forze. In questo caso l’incognita è la forza T. 1) + T cos θ − Mg sin α − µ d N = 0 2) + T sin θ − Mg cos α + N = 0 Quanto valgono gli angoli? s α θ h h = s sin α h s α = arcsin = 12o I valori di θ dipendono dalla statura di chi tira lo slittino. Sono dati del problema e valgono θ p = 45o per il papà θ m = 30o per la mamma Orientamento Formativo 2009-2010 10 3. Si risolvono simbolicamente le equazioni così ottenute rispetto alle incognite, usando ogni altra informazione disponibile. Le incognite possono essere le masse, le componenti delle accelerazioni, o le componenti di alcune delle forze. In questo caso l’incognita è la forza T. 1) + T cos θ − Mg sin α − µ d N = 0 2) + T sin θ − Mg cos α + N = 0 Dalla (2) N = Mg cos α − T sin θ Che sostituito nella (1) dà + T cos θ − Mg sin α − µ d (Mg cos α − T sin θ ) = 0 T (cos θ + µ d sin θ ) = Mg ( µ d cos α + sin α ) T = Mg sin α + µ d cos α cos θ + µ d sin θ Orientamento Formativo 2009-2010 11 4. Si inseriscono i valori numerici e le relative unità di misura nelle equazioni risolutive. Nel nostro caso M = m A + mB + mslittino = ( 20.0 + 20.0 + 5.0) kg = 45.0 kg θ p = 45o θ m = 30o h α = arcsin = 12o s Per cui la forza con cui il papà tira lo slittino è Tp ≅ 193 N Mentre la mamma tira con una forza Tm ≅ 167 N Notiamo che la forza maggiore è applicata dal papà… Ma se considero le componenti orizzontali Tpx = Tpcosθp =136.3 N Tmx = Tmcosθm =144.2 N Perché il papà deve tirare con una forza maggiore, ma con componente orizzontale minore? Orientamento Formativo 2009-2010 12 Ora dobbiamo verificare se davvero la mamma compie più lavoro del papà. Ricordiamo che, nel caso semplice di forza costante agente su un corpo in moto rettilineo, il lavoro compiuto dalla forza durante lo spostamento da A a B è espresso dall’equazione r r = xiˆ r ∆r = ∆xiˆ ∆x = x B − x A LAB r F θ P r F|| O iˆ Quindi il lavoro compiuto dal papà è r r r = F ⋅ ∆r = F | ∆x | cos θ = F|| | ∆x | Nel nostro caso - Lo spostamento |∆x| è s=80 m per ogni risalita - La forza è T - Le risalite compiute sono n=10 L p = nT px s = 136.3 N ⋅ 80 m ⋅10 = 109040 J e il lavoro compiuto dalla mamma è Lm = nTmx s = 144.2 N ⋅ 80 m ⋅10 = 115384 J Orientamento Formativo 2009-2010 13 La differenza di lavoro (ossia di energia spesa dall’organismo) è data da: ∆L = Lm − L p = 6344 J che equivale al lavoro che si compie sollevando per ben 100 volte una massa di 6.5 Kg da terra ad un metro di altezza!! la madre aveva ragione! Orientamento Formativo 2009-2010 14 1) Qual è la forza che lo slittino esercita sulla superficie della neve mentre scende? 2) Se l’attrito tra i pattini dello slittino e la neve fosse nullo, quale sarebbe l’accelerazione dello slittino durante la discesa? Orientamento Formativo 2009-2010 15 Operiamo nel solito modo e costruiamo il diagramma di corpo libero per lo slittino Poi scegliamo gli assi… N …e scomponiamo le forze C Wx = Mgsinα Wy = - Mgcosα Wx α Ny = N h Wy B lungo x lungo y W α { Poi scriviamo l’equazione di Newton lungo gli assi A ΣFx = Mgsinα = Max ΣFy = N - Mgcosα = May = 0 Com’è fatta la risultante delle forze? Orientamento Formativo 2009-2010 16 Risolviamo le equazioni per ottenere N e l’accelerazione lungo x lungo y { Mgsinα = Max N - Mgcosα = 0 Usando i valori numerici m/s2 M = 45.0 kg ax = gsinα N = Mgcosα α = 12° g=9.81 otteniamo ax = 9.81m/s2 ⋅ 0.208 ≅ 2.04 m/s2 N = 45.0 kg ⋅ 9.81 m/s2 ⋅ 0.98 ≅ 433 N Orientamento Formativo 2009-2010 17 Tenendo invece conto dell’attrito tra i pattini dello slittino e la neve (µd=0.150 ), qual è l’accelerazione dello slittino quando scende dalla sommità del pendio? Orientamento Formativo 2009-2010 18 Operiamo nel solito modo e costruiamo il diagramma di corpo libero per lo slittino. Stavolta c’è anche la forza di attrito! Poi scegliamo gli assi, scomponiamo le forze e scriviamo l’equazione di Newton in componenti N C Wx = Mgsinα Wy = - Mgcosα Ny = N fd,x = -fd = -µdN = - µdMgcosα fd Wx α h Wy B lungo x lungo y W α { A ΣFx = Mgsinα - µdMgcosα = Max ΣFy = N - Mgcosα = May = 0 Orientamento Formativo 2009-2010 19 Risolviamo le equazioni per ottenere N e l’accelerazione x y { Mgsinα - µdMgcosα = Max ax = g(sinα - µdcosα) N - Mgcosα = 0 Con i dati originari: M = 45.0 kg, α = 12°, N = mgcosα g = 9.81 m/sec2, µd = 0.150 ax = 9.81 m/s2 (0.21 – 0.1×0.98) = 1.10 m/sec2 Orientamento Formativo 2009-2010 20 Tenendo conto dell’attrito con la neve, qual è la velocità dello slittino quando arriva al fondo del pendio? La velocità finale dello slittino si può facilmente ottenere applicando le equazioni del moto rettilineo uniformemente accelerato lungo la direzione x parallela al piano inclinato e usando l’accelerazione appena calcolata. Proviamo invece qui a fare il calcolo usando considerazioni energetiche. Orientamento Formativo 2009-2010 21 Energia e sua conservazione • In un sistema isolato soggetto a forze solo conservative (attrito assente*) vale il principio di conservazione dell’energia meccanica E: E = U + K = cost ∆E = ∆U + ∆K = 0 dove U = energia potenziale, K = energia cinetica = ½mv2 ossia: Uf – Ui + Kf – Ki = 0 Ui + Ki = Uf + Kf • In un sistema che contiene forze non conservative (attrito presente) il lavoro di tali forze dissipative è uguale alla variazione totale di energia meccanica E del sistema: Lnc = ∆E = ∆U + ∆K = Uf – Ui + Kf – Ki dove se la forza non-conservativa Fnc è costante (vettorialmente!) si ha: r r Lnc = Fnc ⋅ s s è lo spostamento (vettore) lungo cui Fnc ha lavorato Perché un sistema sia conservativo è proprio necessario che non ci sia attrito? Orientamento Formativo 2009-2010 22 Nel nostro caso fd fd,x = -fd = -µdN = - µdMgcosα y Fn C Lnc = - µdMgcosα⋅s x h P s ∆E = 0 - Mgh + ½ Mv f2 - 0 α Uf B Ui Kf Ki A da cui, scrivendo h=s sinα: µd g s cosα = g s sinα - ½ v f2 v = 2 gs (sin α − µ d cos α ) = 2 gh(1 − µ d cot α ) Con i dati originari: α = 12°, g = 9.81 m/sec2, µd = 0.150, s = 80.0 m h=16.6 m vf = 9.80 m/s≅ 35 km/h (senza attrito sarebbe stata vf = √2gh = 18.0 m/sec) Orientamento Formativo 2009-2010 23 Quesiti 1) La forza che il papà deve applicare allo slittino per farlo avanzare a velocità costante su un tratto orizzontale è maggiore se spinge come in (a) o se tira come in (b)? Si usino i dati del problema e gli angoli indicati in figura. M = 45.0 kg µd = 0.150 µs = 0.300 M Immagini tratte da: Raymond A. Serway - John W. Jewett Fisica per scienze ed ingegneria 4° edizione EdiSES ©2009 Orientamento Formativo 2009-2010 24 Quesiti 2) Lo slittino è inizialmente fermo. La mamma, esausta, riesce solo più ad applicare una forza orizzontale pari a 100 N. (a) Dimostrare che lo slittino non si muove. (b) Il papà cerca di aiutarla tirando verso l’alto lo slittino. Quale forza minima verticale deve applicare per far spostare lo slittino? (c) Quale forza addizionale dovrebbe invece applicare il papà se, anziché sollevare, si limitasse a spingere? M = 45.0 kg µd = 0.150 Fp µs = 0.300 Fp Fm Fm Domanda (b) Domanda (c) Immagini tratte da: Raymond A. Serway - John W. Jewett Fisica per scienze ed ingegneria 4° edizione EdiSES ©2009 Orientamento Formativo 2009-2010 25 Quesiti 3) E’ corretto dire che la forza di attrito è sempre opposta al moto? Il camion sta accelerando (a= +1.50 m/s2). La cassa (m= 120 kg) non scivola sul pianale. Quale forza fa accelerare la cassa ? Immagini tratte da: John D. Cutnell, Kenneth W. Johnson, Physics, 7° Edition Wiley Higher Eucation ©2007 Orientamento Formativo 2009-2010 26 Quesiti 4) Che cosa NON sarebbe possibile fare in un mondo senza attrito? Provate a immaginare… Camminare? Andare in bici? Lavarsi i denti? Guidare? Pattinare? Mangiare? Scrivere? Farsi una spremuta? Pulire i vetri? Salire su una scala? Immagini tratte da: John D. Cutnell, Kenneth W. Johnson, Physics, 7° Edition Wiley Higher Eucation ©2007 Raymond A. Serway - John W. Jewett Fisica per scienze ed ingegneria 4° ed. EdiSES ©2009 Orientamento Formativo 2009-2010 27 Quesiti 5) Quando siete in auto e fate una curva, che cosa vi permette di cambiare la direzione dell’auto? Immagine tratta da: John D. Cutnell, Kenneth W. Johnson, Physics, 7° Edition Wiley Higher Eucation ©2007 6) Applicando la conservazione dell’energia e trascurando l’attrito con l’aria, stimate a quale velocità arriverebbe a terra una goccia di pioggia. Vi serve sapere la massa della goccia? Orientamento Formativo 2009-2010 28 Quesiti 7) Dovete progettare una rotaia di montagne russe con un giro della morte. Chiamate R il raggio del cerchio. Trascurando l’attrito, da quale altezza partireste con il vostro carrello per essere sicuri di non cadere? Immagine tratta da: Hugh D. Young, Roger A. Freedman UNIVERSITY PHYS ICS 12° Ed. @ 2008 Pearson Addison-Wesley Orientamento Formativo 2009-2010 Immagine tratta da: Raymond A. Serway - John W. Jewett Fisica per scienze ed ingegneria 4° edizione EdiSES ©2009 29 Quesiti 8) Su quale principio si basa l’ABS (sistema anti-bloccaggio delle ruote) nelle auto? Perché è importante che le ruote non scivolino? Con ABS Orientamento Formativo 2009-2010 30 Quesiti 8) Su quale principio si basa l’ABS (sistema anti-bloccaggio delle ruote) nelle auto? Perché è importante che le ruote non scivolino? Senza ABS Orientamento Formativo 2009-2010 31