Suono in un certo punto dello spazio: una rapida variazione di pressione (compressione e rarefazione) intorno al valore assunto dalla pressione atmosferica in quel punto. Sorgente sonora: un qualsiasi dispositivo, apparecchio ecc. che provochi direttamente o indirettamente (ad esempio per percussione) queste variazioni di pressione. In natura le sorgenti sonore sono quindi praticamente infinite come ognuno può constatare. Propagazione del suono: affinché il suono si propaghi occorre che il mezzo che circonda la sorgente sia dotato di elasticità. Campo sonoro: la porzione di spazio interessata da tali variazioni di pressione. 2 Schema di generazione del suono 3 Qualora le oscillazioni sonore abbiano una frequenza (numero di cicli in un secondo) compresa all’incirca tra 20 e 20.000 Hz1 (campo di udibilità) ed una ampiezza, ovvero contenuto energetico, superiore ad una certa entità minima di pressione pari a 2×10-5 Pa, definita soglia di udibilità, (inferiore di circa 5 miliardi di volte alla pressione atmosferica standard di 1013 mbar), queste sono allora udibili dall'orecchio umano e possono talora suscitare sensazioni, cui attribuiamo genericamente la denominazione di “rumore” se esse vengono avvertite come fastidiose o sgradevoli, oppure di suono. Il numero delle variazioni di pressione compiute in un secondo viene chiamato frequenza del suono e si misura in Hertz (simbolo Hz o s-1). 4 In sintesi le condizioni essenziali per la generazione, propagazione e udibilità del suono sono quattro: -la presenza di un mezzo elastico (nel vuoto non c’è propagazione sonora); -una variazione di pressione nel mezzo intorno ad un valore di equilibrio (ad esempio la pressione atmosferica); -una frequenza delle variazioni di pressione compresa nel campo udibile; - un contenuto energetico superiore ad una soglia minima di udibilità. 5 In campo sonoro la distanza che intercorre tra due successive compressioni, o rarefazioni, è definita lunghezza d'onda l del suono nel mezzo considerato; la situazione del campo sonoro ad un dato istante può essere rappresentata mediante il grafico di figura 3 dove in ordinata sono riportate le variazioni della pressione in funzione della distanza perturbata; con Dpmax si indica l’ampiezza ovvero il valore massimo della variazione di pressione. Suono sinusoidale: variazione in funzione della distanza 6 Analogamente la situazione del campo sonoro può essere analizzata osservando come varia la pressione in un punto in funzione del trascorrere del tempo: in tal caso graficamente il fenomeno è del tutto analogo a quello precedentemente mostrato, ma avendo questa volta in ascissa il tempo ed in luogo della lunghezza d’onda l il periodo T, tempo necessario a compiere un ciclo, ovvero l’intervallo di tempo che passa tra due istanti consecutivi nei quali, nel punto considerato, si ha un massimo od un minimo relativo della pressione. Suono sinusoidale: variazione in funzione del tempo 7 La frequenza f è legata al periodo T dalla relazione: f = 1/T (s-1 o Hz) La relazione che lega la velocità di propagazione c del suono nel mezzo alla lunghezza d'onda l ed alla frequenza f è la seguente: c = l × f = l × 1/T (m ×s-1) f = c/l (Hz ovvero s-1) Nomogramma di visualizzazione del rapporto che intercorre tra l e f. 8 Dalla relazione c = l × f = l × 1/T (m ×s-1) si deduce che nel campo dei suoni udibile la lunghezza d’onda varia da un minimo di circa 20 mm (a 18kHz) a circa 17 m (a 20 Hz): ciò evidenzia la difficoltà nel controllo delle sorgenti sonore caratterizzate da elevato contenuto energetico alle basse frequenze. Le variazioni di pressione Dp, come accennato, sono sia positive (compressione) che negative (rarefazione), pertanto per esprimere con un unico valore la loro entità non si può ricorrere al loro valore medio che risulterebbe nullo. 9 Si introduce allora il concetto di pressione sonora efficace definita come il valore medio efficace delle variazioni di pressione dato dalla seguente relazione: T p ef f Dp 2 d T 0 Pressione sonora efficace 10 Variazione della pressione in funzione del tempo. 11 Appare poi evidente il primo aspetto fondamentale del fenomeno fisico in esame che risulta essenzialmente influenzato dallo spettro di emissione della sorgente sonora. Tutto lo studio dell’acustica architettonica è sostanzialmente incentrato sull’analisi spettrale delle sorgenti e sulle modalità di risposta dei mezzi adottati per il controllo del fenomeno (in termini di riflessione, assorbimento e trasmissione dell’energia sonora incidente). Nel caso più semplice si può ipotizzare che dette variazioni di pressione seguano una legge sinusoidale (moto armonico), in tal modo lo strato d'aria adiacente alla sfera subirà espansioni e contrazioni con la stessa frequenza della sfera, e così per gli strati d'aria concentrici successivi in modo che, dopo un certo tempo, in tutti i punti del mezzo che circonda la sfera si hanno delle variazioni periodiche di pressione. I segnali che più frequentemente ricorrono nella realtà sono invece, generalmente, segnali complessi aperiodici: tali segnali sono caratterizzati dall’avere uno spettro continuo, che comprende cioè un numero infinito di componenti distribuite con continuità sull’asse delle frequenze. 12 Il segnale complesso aperiodico più tipico è il rumore, in particolare il rumore è detto bianco se la distribuzione delle intensità è uniforme nel range di frequenze compreso nell’udibile, ossia tra i 2 Hz ed i 20 kHz. Pertanto, si può fissare una distinzione di natura qualitativa tra suoni e rumori. Suoni: i segnali composti da un certo numero di frequenze fisse e ben definite, ossia da una somma di componenti sinusoidali aventi particolari caratteristiche di periodicità. Rumori: quei fenomeni completamente casuali costituiti da un numero infinito di componenti, ciascuna con caratteristiche di ampiezza e fase puramente aleatorie e che rappresentano elemento di disturbo per la ricezione da parte dell'orecchio umano. Il rumore, considerato come un insieme di suoni, è completamente individuato quando si conosce, per tutte le bande di frequenza in Hz, il suo livello sonoro in dB, cioè il suo spettro acustico. 13 2.00 1.50 1.00 0.50 0.00 4 2 -0.50 -1.00 -1.50 -2.00 2.00 1.50 sen t 1.00 0.50 1 sen 3 1 sen 5 t 5 3 t 1 sen 2 t 2 1 sen 6 t 6 1 sen 4 t 4 0.00 2 4 -0.50 -1.00 -1.50 -2.00 Segnale complesso e sue armoniche componenti. 14 Come accennato in precedenza, le sorgenti sonore reali non emettono praticamente mai suoni puri vibrando con oscillazione sinusoidale ad una ben definita frequenza. Nella realtà, pertanto, il più delle volte l’andamento temporale della pressione sonora in un punto si presenta come una funzione complessa. Il suono può essere considerato come composto da un insieme di diverse frequenze variabili in maniera discreta e con continuità. Si comprende pertanto per quale ragione, in molte applicazioni tecniche relative soprattutto alla registrazione e riproduzione della musica, all’analisi del rumore prodotto da macchinari o ambienti, sia necessario valutare non solo il livello sonoro complessivo, cioè misurare la quantità di energia sonora pertinente a quel fenomeno, ma anche conoscere quale sia la distribuzione energetica alle varie frequenze. Lo scopo dell’analisi in frequenza è pertanto quello di definire il contenuto energetico di un suono complesso alle diverse frequenze che lo compongono, anche variabili istantaneamente. Il cosiddetto spettro sonoro è la rappresentazione del livello di pressione sonora di ogni armonica del suono. 15 Rappresentazione nel dominio del tempo e della frequenza (spettro) di suoni puri ed armonici 16 Rappresentazione nel dominio del tempo e della frequenza (spettro) di suoni complessi e aperiodici 17 3150 2500 2000 1600 1250 1000 800 630 500 400 315 250 200 160 125 100 Livello di pressione sonora (dB) 80,0 70,0 60,0 50,0 40,0 frequenza ((Hz) Spettrogramma di un rumore 18 Riferendosi ai suoni, si è soliti indicare come loro caratteri distintivi, dal punto di vista della sensazione sonora, l’intensità, l’altezza ed il timbro. L’intensità del suono è legata alla quantità di energia trasportata dall’onda che giunge all’orecchio nell’unità di tempo. L’altezza di un suono puro è determinata dalla frequenza dell’onda sonora: i suoni corrispondenti a basse frequenze si dicono bassi o gravi, quelli corrispondenti ad alte frequenze sono invece alti o acuti. In particolare, la frequenza fondamentale determina l’altezza del suono, le sue armoniche superiori il timbro. Due suoni emessi da due strumenti musicali diversi, pur se uguali in altezza ed intensità, hanno diverso timbro. 19 LA PERCEZIONE DEL SUONO Le vibrazioni originate da una sorgente sonora vengono trasmesse dal mezzo sotto forma di onde e quindi colpiscono nell’orecchio la membrana del timpano. Tali vibrazioni, per essere sonore, ossia percepibili dall’orecchio umano, devono avere una frequenza compresa tra 20 Hz e 20 kHz, limiti di sensibilità dell’organo dell’udito umano, che delimitano il cosiddetto campo di udibilità. Tali limiti tuttavia, hanno solamente valore statistico, potendo variare da individuo a individuo e con l’età; inoltre le frequenze più elevate, prossime ai 20 kHz, possono essere percepite solo da un ascoltatore in giovane età, ma la sensazione è sempre accompagnata da un senso di fastidio. Oscillazioni a frequenze minori o maggiori non provocano più alcuna sensazione uditiva e sono dette rispettivamente infrasuoni ed ultrasuoni: le onde sismiche sono un esempio di infrasuoni, mentre ultrasuoni possono essere prodotti ad esempio dalle vibrazioni elastiche di un cristallo di quarzo indotte per risonanza mediante l’applicazione di un campo elettrico alternato (effetto piezoelettrico). Infrasuoni ed ultrasuoni, pur non essendo rilevabili dall’orecchio umano, possono provocare sensazioni fisiologiche attraverso altri organi. Le vibrazioni delle membrana del timpano sono quindi trasmesse al cervello che le traduce in sensazioni sonore, più o meno piacevoli. 20 Il comportamento dell’orecchio umano in presenza di un suono puro è tale che la sensazione sonora non è solamente conseguenza dei valori di intensità o dei corrispondenti livelli di pressione, ma risulta contemporaneamente legata anche alla frequenza del suono stesso. In particolare, la sensibilità dell’orecchio umano al rumore è differente alle varie frequenze dello spettro: è massima per le frequenze centrali, intorno ai 1000 Hz, e tende a decrescere alle alte frequenze, ed in misura ancora maggiore a quelle basse. Una tale dipendenza è illustrata in un diagramma detto audiogramma normale, realizzato su base sperimentale da Fletcher e Munson. Tale diagramma rappresenta le curve di isosensazione: in esso sono riportate in ascissa le frequenze dei suoni (solitamente in scala logaritmica) ed in ordinate i valori del livello di pressione sonora. La curva più in basso rappresenta la soglia di udibilità: essa riporta, per ogni frequenza, il valore minimo di pressione sonora capace di generare nell’ascoltatore una sensazione uditiva. La curva più in alto rappresenta invece la soglia di dolore. 21 In ogni caso le due soglie inferiore e superiore delimitano una vasta area del diagramma, avente una forma caratteristica e denominata area di udibilità normale, che racchiude i punti rappresentativi di tutti i possibili fenomeni oscillatori sinusoidali capaci di generare vere e proprie sensazioni uditive in un normale ascoltatore. Audiogramma normalizzato 22 Audiogramma normalizzato I LIVELLI SONORI: IL DECIBEL Nei problemi pratici di acustica, considerato l’enorme campo di variazione delle grandezze in gioco (frequenza e potenza), non conviene esprimere le grandezze acustiche quali la pressione sonora, la potenza e l'intensità in valori assoluti. Si preferisce quindi esprimere dette grandezze facendo il logaritmo del rapporto tra le stesse e determinati valori di riferimento assunti come livelli "zero". Questo sistema si è rivelato utile sia perché la scala logaritmica comprime i valori numerici, sia perché l'intensità delle sensazioni uditive è in prima approssimazione proporzionale al logaritmo dello stimolo e non al valore assoluto dello stesso. In acustica pertanto per le grandezze energetiche si usa adottare il livello sonoro espresso in decibel (dB) definito come il logaritmo decimale del rapporto tra il valore in esame ed il valore di riferimento. 23 I LIVELLI SONORI: IL DECIBEL Si ha pertanto: Livello di potenza sonora Lw Lw = 10 log Pw /P0 (dB) dove Pw è la potenza sonora in esame (W) e P la potenza sonora di riferimento (10 -12 W) Livello di intensità sonora LI LI = 10 log I /I0 (dB) dove I è l'intensità sonora in esame (W/m²) e I0 l'intensità sonora di riferimento (10-12 W/m²) Livello di pressione sonora LP LP = 10 lg p2 /(p0)2 = 20 lg p/p0 (dB) dove p è la pressione sonora in esame (Pa) e p0 l'intensità sonora di riferimento (2·10-5 Pa) 24 25 Livello equivalente continuo I rumori sono eventi sonori generalmente fluttuanti e pertanto descriverli in termini quantitativi presenta qualche difficoltà. Dall’esigenza di caratterizzare con un unico valore la rumorosità, nel caso in cui il livello di pressione sonora vari all’interno di un intervallo di tempo prefissato, è scaturito il concetto di livello equivalente continuo (Leq), che rappresenta il livello di un rumore continuo stazionario equivalente al rumore fluttuante da valutare per quanto concerne i suoi effetti indesiderati: esso esprime pertanto un livello energetico medio del rumore nell’intervallo di tempo considerato (Figura 1.4). Più precisamente esso viene definito come il livello del rumore continuo stazionario che erogherebbe una quantità di energia sonora pari a quella effettivamente erogata dal rumore fluttuante nello stesso intervallo di tempo. 26 La sua espressione è data da: 1 p A t dt 10 log T 0 p0 T L Aeq 2 nella quale T rappresenta la durata dell’emissione rumorosa (e quindi l’intervallo di tempo di riferimento), pA(t) il valore istantaneo della pressione sonora, in curva di ponderazione A, e p0 il valore della pressione sonora di riferimento. Tale espressione spesso viene scritta anziché in funzione della pressione pA(t), in funzione del corrispondente livello LA(t): T L Aeq 1 10 log 100,1L A ( t )dt T0 27 Livello sonoro equivalente continuo. Il livello equivalente continuo calcolato sui livelli sonori espressi in dB(A) è il descrittore acustico che viene più comunemente usato per la valutazione del disturbo arrecato da sorgenti di rumore aleatorio, come il rumore da traffico stradale, o per la valutazione dell’esposizione dei lavoratori al rumore. La misura del livello equivalente continuo si effettua in tempo reale attraverso misuratori di livello sonoro dotati di appositi circuiti integratori (fonometri). 28 Propagazione del suono nelle pareti Quando un’onda sonora di potenza Wi colpisce una parete, una parte dell’energia (Wr) viene rinviata nel mezzo di provenienza, una parte (Wa) viene assorbita trasformandosi in calore ed una terza parte (Wt) attraversa la parete Wr Wi Wt Wa Riflessione, assorbimento e trasmissione dell’energia sonora. 29 Si può scrivere pertanto il bilancio energetico come: Wi Wr Wa Wt da cui, dividendo ambo i membri per Wi, si ricava: 1 con: Wr Wi Wa Wi Wt Wi rispettivamente coefficienti di riflessione, di assorbimento e di trasmissione della parete nei confronti dell’energia sonora incidente, il cui valore, variabile da 0 a 1, dipende dal materiale e dalla finitura superficiale della parete, oltre che dalla frequenza e dall’angolo di incidenza dell’onda sonora. 30 Il parametro che viene utilizzato per quantificare la trasmissione del suono tra due ambienti differenti, in uno dei quali si trova la sorgente sonora e nell’altro il ricevitore, è l’isolamento acustico. L’isolamento acustico I tra due ambienti, il primo disturbante caratterizzato dal livello di pressione sonora Lp1 ed il secondo disturbato caratterizzato dal livello di pressione sonora Lp2 è dato dalla differenza dei due livelli: I Lp1 Lp2 In particolare, nel caso di due ambienti riverberanti separati da una parete piana di superficie Sp è possibile trovare il legame tra i livelli di pressione sonora presenti nei due ambienti, che è dato da: LP 2 SP LP1 R 10 log10 A S L 1 R L 2 W 31 Nel caso di un campo sonoro di onde piane emesse da una sorgente sonora di potenza non necessariamente nota, è possibile prevedere, misurando il livello di pressione sonora Lpf presente in facciata, il livello di pressione sonora all’interno di un ambiente riverberante di superficie di assorbimento equivalente nota, separato dall’esterno da una parete divisoria di superficie Sp e potere fonoisolante R. In questo caso l’isolamento acustico è dato da: S L1 Lpf R 10 log10 P 6 10 log10 cos A R L f C L f W W 32 Ipotizzando una propagazione di tipo cilindrico, il livello di pressione sonora in un generico punto P della facciata di un edificio si può calcolare con l’espressione: LPi LW 10 log d i 8 D L1 L Pi P di Lpf LW d ove LW è il livello di potenza della sorgente, di la distanza del punto P dalla sorgente stessa e D l’indice di direttività. 33 Nell’ipotesi in cui la strada, essendo sede di traffico veicolare, sia una superficie riflettente, si può ritenere che essa sia sede di un campo semicilindrico, per il quale l’indice di direttività D è pari a 3. L’espressione precedente diventa allora: LPi LW 10 log d i 5 dalla quale si ottiene che, nel caso considerato, di un campo libero sede esclusivamente di traffico veicolare: SP L1 Lpf R 10 log 6 20 log cos A con angolo formato dalla direttrice che unisce la sorgente al generico punto P ed il piano orizzontale e A rappresenta l’assorbimento acustico totale dell’ambiente. 34 L’attitudine di una parete di trasmettere energia sonora è sintetizzata dal coefficiente di trasmissione acustica, , in funzione del quale viene definito il parametro potere fonoisolante, per mezzo della relazione: Wi 1 R 10 log10 10 log Wt Il potere fonoisolante di una parete rappresenta la sua attitudine a ridurre la trasmissione del suono su di essa incidente: esso è pertanto una grandezza propria della parete, che varia in funzione della frequenza dell’energia incidente, delle proprietà strutturali e della massa per unità di superficie della parete. Nel caso di una parete di data superficie S, composta da una parte, di superficie S1 e coefficiente di trasmissione 1 e una parte, di superficie S2 e coefficiente di trasmissione 2, il potere fonoisolante è dato da: s2 2 Rc 10 log s1 1 Si i i Si (dB) Ri 10 10 35 TEMPO DI RIVERBERAZIONE Si tratta di una grandezza che esprime la qualità acustica negli ambienti interni. Deve essere riferito al volume dell'ambiente. La verifica su progetto si esegue sulla base dei valori certificati del coefficiente di assorbimento acustico dei materiali presenti nell'ambiente da verificare, applicando l’espressione di Sabine o quella di Eyring. La verifica in opera si esegue attraverso misurazioni acustiche che si effettuano con uno strumento chiamato fonometro. Significato fisico del tempo di riverberazione Tempo impiegato dal livello di pressione sonora per ridursi di 60 dB dopo che è cessata l’emissione da parte della sorgente sonora. 36 Campo acustico riverberante 37 38 39 40 D2m,nT,w R’w LAeq LASmax Ln,w R’w LAeq LASmax 41 42 43 44 45 46 47 48 49 50 L’attitudine di una parete di trasmettere energia sonora è sintetizzata dal coefficiente di trasmissione acustica, , in funzione del quale viene definito il parametro potere fonoisolante, per mezzo della relazione: Wi 1 R 10 log10 10 log Wt Il potere fonoisolante di una parete rappresenta la sua attitudine a ridurre la trasmissione del suono su di essa incidente: esso è pertanto una grandezza propria della parete, che varia in funzione della frequenza dell’energia incidente, delle proprietà strutturali e della massa per unità di superficie della parete. Nel caso di una parete di data superficie S, composta da una parte, di superficie S1 e coefficiente di trasmissione 1 e una parte, di superficie S2 e coefficiente di trasmissione 2, il potere fonoisolante è dato da: s2 2 Rc 10 log s1 1 Si i i Si Ri 10 10 35 muratura parete in cls infisso tramezzo f R R R R (Hz) (dB) (dB) (dB) (dB) 100 38,00 28,5 18,8 34,0 125 40,00 26,8 17,0 35,0 160 42,50 35,1 26,3 36,0 200 43,00 38,0 30,4 34,0 250 45,00 37,5 29,0 33,8 315 46,50 37,3 28,1 33,0 400 47,00 39,7 31,5 32,0 500 48,00 39,6 30,9 33,5 630 48,80 40,4 31,2 33,0 800 49,50 41,5 31,9 35,0 1000 51,50 39,1 29,2 37,5 1250 56,00 38,3 28,4 42,0 1600 59,00 33,6 23,6 45,0 2000 63,00 34,1 24,1 47,5 2500 66,00 35,5 25,5 52,0 3150 68,00 36,8 26,8 51,0 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 Poteri fonoisolanti di una parete in funzione dell'intonaco Confronto fra i poteri fonoisolanti di strutture in laterizio Effetto coincidenza, risonanza, risonanza di cavità: interventi Funzionamento di una parete con materiale assorbente in intercapedine. Parete in doppio forato più materiale fonoassorbente in opera (particolare) Confronto fra i poteri fonoisolanti di strutture in laterizio semplici e doppie Miglioramento del potere fonoisolante di alcune strutture in laterizio e in calcestruzzo grazie al rivestimento "a pelle resiliente". Miglioramento del potere fonoisolante di alcune strutture in laterizio e in calcestruzzo grazie al rivestimento "a pelle resiliente". Confronto fra i poteri fonoisolanti di strutture in laterizio – strutture in laterizio + sistema a pelle resiliente – strutture in gesso rivestito Parete in gesso rivestito in opera: particolare Incremento del potere fonoisolante di pareti in gesso rivestito La finestra come “sistema fonoisolante”. Finestra ad alto potere fonoisolante Porta per uscita di sicurezza Porta ad alto potere fonoisolante (dettaglio) Alcuni esempi di interventi di correzione acustica Nessun intervento Riduzione della trasmissione dei rumori impattivi attraverso l'installazione di un pavimento ricoperto da materiale resiliente Riduzione della trasmissione dei rumori impattivi attraverso l'installazione di un controsoffitto desolidarizzato elasticamente sospeso Riduzione della trasmissione dei rumori impattivi attraverso l'installazione di un controsoffitto desolidarizzato elasticamente sospeso più l'inserimento di contropareti fonoisolanti. Con questo sistema si potrà arrivare ad una corretta insonorizzazione di un locale disturbato ma non della totalità dell'edificio Riduzione della trasmissione dei rumori impattivi attraverso il sistema del pavimento galleggiante Soluzione ottimale per il fonoisolamento di rumori impattivi e aerei Pavimento galleggiante Schema costruttivo di un controsoffitto desolidarizzato ed elasticamente sospeso Interconnessioni tra unità: camere Elementi strutturali delle unità: camere Interconnessioni tra unità: bagno Elementi strutturali delle unità: bagno Interconnessioni tra unità: cucina Elementi strutturali delle unità: cucina Interconnessioni tra unità: soggiorno Elementi strutturali delle unità: soggiorno ESEMPI DI ITER PROGETTUALE - PREMESSA Nell’affrontare i problemi relativi alla progettazione acusticamente orientata, occorre tenere presente un concetto di base, vale a dire la MULTIDISCIPLINARITÀ, necessaria quando si affrontano problemi che possono riguardare interventi di FONOISOLAMENTO ovvero interventi di CORREZIONE ACUSTICA. In particolare, nel caso di un intervento di fonoisolamento, occorrerà tenere sempre presenti le relazioni spaziali fra tutte le parti dell’edificio, specialmente tra quelle che presumibilmente causeranno un disturbo da rumore, e quelle che invece occorre proteggere dal rumore. Invece, nel caso di un intervento di correzione acustica, oltre naturalmente alla dovuta attenzione che necessariamente si dovrà porre nei confronti della protezione dell’ambiente in questione dal rumore proveniente da altri ambienti (esterni o interni) il punto fondamentale che il progettista deve considerare è il rapporto volumetrico, geometrico e materico degli spazi.