Si assimila un corpo fisico di massa m ad un punto materiale P : 3 gradi di liberta’ (posizione, non c’e’ rotazione) La forza e’ un vettore F, principio di sovrapposizione = SFi e’ ancora una forza F Lo stato di moto e’ definito noti i vettori R e V ( V=dR/dt) oppure q = mv = m dR/dt R e V dipendono dal sistema di riferimento scelto, che e’ arbitrario. Un riferimento e’ inerziale se , in assenza di forze q= cost (e viceversa) In un sistema inerziale la variazione di q in presenza di forze e’ in dipendente dal Riferimento dq= F dt F=dq/dt La forza e’ sempre la manifestazione di una interazione In una interazione F12 + F21= 0 in un sistema isolato S Fi = 0 Sono relazioni vettoriali F = dq/dt significa la simultanea validita’ di Fx = dqx/dt Fy=dqy/dt Fz= dqz/dt q=cost qx = costx qy= costy etc Se il corpo e’ esteso (o si hanno piu’ corpi) quanto sopra si applica al Centro di Massa Il centro di massa si comporta come un punto materiale dotato di tutta la massa del sistema e a cui sia applicata la somma delle forze esterne applicate al corpo. Una forza applicata al punto P puo’ avere un momento M rispetto a un punto O M = OP X F = d/dt (OPXq) = dLo/dt Lo = momento della quantita’ di moto Quanto si applica ad F e q si applica a M ed Lo. M=dLo/dt etc Questi sono postulati. Essi riflettono fatti sperimentali. La materia si comporta cosi’. La velocita’ areale e’ costante perche’ L=cost Isolato: comprende tutte le parti interagenti CONSEGUENZE: Se f (o Sf) agisce per un tempo dt (impulso) dI= fdt = dt dq/dt = dq L’impulso e’ un vettore ∫fdt= q2-q1 Se f (o Sf) agisce per un tratto ds (lavoro) dL= f ∙dR = dR∙dq/dt = V∙dq =q/m∙dq = d (q2/2m) ∫F ∙ dR = Ekfin – Ekiniz Se f agisce per un tratto ds in un tempo dt F ∙ dr / dt = dL/dt = Fv = potenza In alcuni casi f ∙ dR e’ anche uguale a = - dU(x,y,z) e SfdR = -(Uf-Ui) In questi casi ∫fdR = - (Uf –Ui) = Ekf-Eki Uf + Ekf = Ui +Eki Questo principio si chiama “conservazione dell’energia meccanica”. Una forza per la quale si possa definire una U si chiama Forza conservativa Una forza e’ conservativa se ∫ f ∙ dr = 0 lungo qualsiasi cammino chiuso. Microscopicamente tutte le forze di natura (elastica, peso/gravita’,elettricita’ etc) hanno questa proprieta’. Macroscopicamente possono presentare effetti dissipativi. Il lavoro di una forza di attrito e’ sempre contraria al moto . (La forza di attrito e’ fondamentale per la stabilita’di strutture composte, pensare alla vite) In presenza di forze dissipative l’energia meccanica NON si conserva. Un freno dissipa l’energia cinetica di una bicicletta e il suo lavoro e’ uguale all’energia dissipata. Questo vale per un punto materiale o per il centro di massa di un sistema esteso che non abbia moto intorno al CdM . Se il sistema ha possibilita’ di muoversi intorno al CdM l’energia si ripartisce tra i gradi di liberta’ del moto del CdM e quelli del moto relativo al CdM. L’energia cinetica posseduta da una ruota E = 1/2m V2cdm + ½ I ω2 V e ω sono correlati Vcdm = ω R se la ruota non slitta . Bisogna considerare i momenti delle forze rispetto al CdM (fatto solo nel caso statico : Archimede e la leva, ma anche caso dello sciatore ) CdM r1 m r2 M r1Xmg + r2XMg =0 F = (M+m)g F . In assenza di attrito la ruota scivola La accelerazione a e’ definita z p a P P’ da p= Ma. e la velocita’ finale e’ fissata dalla conservazione dell’energia mecc. mgh + 0 = 0 + 1/2 Mv2 Se c’e attrito la ruota puo’ rotolare senza strisciare. Le forze attive sono l’attrito a ,diretto lungo –X, e il peso p lungo +x. La forza risultante e’ p-a = M acm , quindi il centro di massa ha una accelerazione minore rispetto al caso in assenza di attrito. La velocita’ di P rispetto al piano e’ nulla (il pneumatico lascia un’impronta, come il piede di uno che corre). Quindi il punto P a cui il piano applica a non si sposta(ds=0) : il lavoro dell’attrito e’ nullo, p e’ conservativo e il suo lavoro e’ mgh = variazione di energia cinetica La stessa del caso in assenza di attrito ma l’accelerazione del cm e’ minore e quindi minore la sua velocita’ finale, una parte di energia cinetica e’ andata nel moto rotatorio intorno al cm. Nel tempo dt il punto di contatto e’ P’ e il cdm ha percorso il tratto ds = R dθ con una velocita’ v = ds/dt = R dθ/dt = R ω. La velocita’ di dm e’ Vdm = Vcm + Vtang La sua Ecin = ½ dm (V2cm + V2tang + 2 Vcm∙ Vtang) E tot = somma su tutti i dm Etot= ½ MV2cm + ½ MV2tang + Vcm∙ Σdm Vtang ma ΣdmVtang= 0 2 2 Poiche’ Vtang = R ω Etot = ½ MV cm + ½ MR ω2 = Mgh ½ MV2cm < Mgh MR2 e’ il momento di inerzia I del pneumatico . Se il corpo fosse una sfera piena I = 2/5 MR2 FORZE CONSIDERATE: Peso : forza conservativa Molla e elastico : forza conservativa tensione: forza interna,statica attrito :forza dissipativa NB: l’attrito non genera mai moto , ma vi si oppone Casi considerati : funi e sospensioni , la fune trasmette una forza eguale alla sua tensione. E’ un vincolo inestensibile che si oppone ad aumenti di distanza (soffitto corpo, oppure corpo-corpo). Questo ruolo puo’ essere svolto anche da una sbarra rigida, che si oppone a variazioni di distanza. La fune e’ capace di sole “tensioni”, la sbarra puo’ essere “compressa”. T M T T C M T M M T L’attrito si manifesta tra un corpo e un vincolo su cui il corpo “striscia” . Il vincolo puo’ essere una guida orizzontale o inclinata , ma anche curva, che impedisce movimenti del corpo ad essa perpendicolari, in uno o entrambi i versi. La forza d’attrito e’ sempre proporzionale alla intensita’ della forza esplicata dal vincolo nella direzione ad esso perpendicolare (reazione normale) ed agisce tangenzialmente. Quando l’impedimento al moto non viene da un vincolo , ma dall’aria ,o dall’acqua si parla di “resistenza” al moto. +F O P -F Fa X Y θ X Un motore applica alla ruota un momento M Schematizzato dalla coppia + F e –F . La ruota esercita al suolo la forza - F . Se F < Fa max con Fa max = μs M g -F+Fa =0 nel punto P, e P e’ fermo rispetto al suolo. -La risultante delle forze e’ –F+Fa +F = +F la ruota avanza sotto l’azione di F applicata al suo cm. F= Macm Se F > μs M g la ruota slitta, il punto P si muove rispetto al suolo e μs diventa μd < μs cioe’ Fa diventa F’a =μdMg < F -F+F’a = - F” +F – F”< F e la ruota avanza piu’ lentamente. Il vincolo puo’ reagire lungo due direzioni : una normale e una parallela al piano inclinato. Quella normale e’ Rn = mg cosθ quella parallela e’ l’attrito e vale al max. Rp =μs Rn Se non c’e’ attrito Rp= 0 Il problema tipico e’ trovare la legge del moto in presenza di una forza R (t) === Questo richiede l’integrazione della funzione vettoriale F = m d2R/dt2 Cioe’ delle tre equazioni scalari Fx = Fy= Fz= Semplice se la direzione di F e’ costante (es peso,attrito su un piano),l’equazione vettoriale si puo’ semplificare molto assumendo un asse del riferimento parallelo a F. y Su m agisce F= mg = cost Fx = 0 qx = cost vx = cost =vox x = vox t Fy = - mg = dqy/dt y = yo +voy t – ½ gt2 x Quando y = y max vy=0 L = -mgymax = ½ m v2f – 1/2mvoy2 Ma la forza e’ anche conservativa L = -mgymax = ½ m v2f – 1/2mvoy2 L = - (U(ymax) –U(0)) = - mgymax E la vy con la quale tocca il suolo = v0y perche’ U = -mgy e y finale =y iniziale La cosa e’ ancora piu’ semplice se il moto e’ lungo una retta . Nel caso di un moto piano si possono considerare due esempi : moto di un grave lanciato (parabola o simile se si tiene conto della resistenza dell’aria) o moto “centrale” in cui la forza risultante agente non ha direzione costante ma ha una componente che punta sempre ad un punto P (pianeti [sola gravita’] , pendolo [g + tensione fune]……..) In questo caso la velocita’ varia in direzione o in direzione e modulo. L’accelerazione ( cioe’ dq/dt) ha cioe’ due componenti una normale alla traiettoria che provoca il solo il cambiamento di direzione e che ha intensita’ a’= v2/r dove v il modulo istanteneo della Velocita’ e r il raggio locale di curvatura, ed una a” Tangente alla curva a” = dv/dt dove v e’ il modulo della velocita’. ω = costante o Piano orizzontale Tfune = cost = M ω2 R = Mv2/R Se si accorcia lentamente la fune tirandola attraverso il foro :la tensione ha momento nullo rispetto a O. Lo= cost = RXMv = MvR =Mv’r v’/v = R/r T’ =Mv’2r = Mv2 R2/r Lavoro = Ecin f – Ecin i fune C sbarra Piano verticale o A B Tsbarra (A) – mg = M ω2 R Ts (B) = M ω2 R Ts(C) + mg = M ω2 R