Algoritmi e Strutture Dati Capitolo 11 Grafi e visite di grafi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione Un grafo G=(V,E) consiste in: - un insieme V di vertici (o nodi) - un insieme E di coppie di vertici, detti archi o spigoli: ogni arco connette due vertici Esempio 1: V={persone che vivono in Italia}, E={coppie di persone che si sono strette la mano} Esempio 2: V={persone che vivono in Italia}, E={(x,y) tale che x ha inviato una mail a y} 2 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Terminologia (1/2) Esempio 1: relazione simmetrica grafo non orientato Esempio 2: relazione non simmetrica grafo orientato n = numero di vertici m = numero di spigoli ∑ d(v)=2m L ed I sono adiacenti vV (L,I) è incidente su L ed I I ha grado 4: d(I)=4 3 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Terminologia (2/2) < L , I , E, C, B, A > è un cammino nel grafo di lunghezza 5 Non è il più corto cammino tra L ed A La lunghezza del più corto cammino tra due vertici si dice distanza: L ed A hanno distanza 4 4 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Strutture dati per rappresentare grafi 5 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Grafi non orientati 6 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Grafi orientati 7 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Prestazioni della lista di archi 8 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Prestazioni delle liste di adiacenza 9 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Prestazioni della matrice di adiacenza 10 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Visite di grafi 11 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Scopo e tipi di visita • Una visita (o attraversamento) di un grafo G permette di esaminare i nodi e gli archi di G in modo sistematico • Problema di base in molte applicazioni • Esistono vari tipi di visite con diverse proprietà: in particolare, visita in ampiezza (BFS=breadth first search) e visita in profondità (DFS=depth first search) 12 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Algoritmo di visita generica 13 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Osservazioni • Un vertice viene marcato quando viene incontrato per la prima volta: la marcatura può essere mantenuta tramite un vettore di bit di marcatura • La visita genera un albero di copertura T del grafo • L’insieme di vertici FT mantiene la frangia di T: – vT-F: v è chiuso, tutti gli archi incidenti su v sono stati esaminati – vF: v è aperto, esistono archi incidenti su v non ancora esaminati 14 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Costo della visita Il tempo di esecuzione dipende dalla struttura dati usata per rappresentare il grafo: • Lista di archi: O(mn) • Liste di adiacenza: O(m+n) • Matrice di adiacenza: O(n2) 15 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Visite particolari • Se la frangia F è implementata come coda si ha la visita in ampiezza (BFS) • Se la frangia F è implementata come pila si ha la visita in profondità (DFS) 16 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Visita in ampiezza 17 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Visita in ampiezza 18 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Esempio: grafo non orientato (1/2) 19 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Esempio: grafo non orientato (2/2) 20 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Esempio: grafo orientato 21 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Proprietà • Per ogni nodo v, il livello di v nell’albero BFS è pari alla distanza di v dalla sorgente s • Per ogni arco (u,v) di un grafo non orientato, gli estremi u e v appartengono allo stesso livello o a livelli consecutivi dell’albero BFS • Se il grafo è orientato, possono esistere archi (u,v) che attraversano all’indietro più di un livello 22 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Visita in profondità 23 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Visita in profondità 24 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Esempio: grafo non orientato (1/2) 25 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Esempio: grafo non orientato (2/2) 26 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Esempio: grafo orientato (1/2) 27 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Esempio: grafo orientato (2/2) 28 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Proprietà • Sia (u,v) un arco di un grafo non orientato. Allora: – (u,v) è un arco dell’albero DFS, oppure – i nodi u e v sono l’uno discendente/antenato dell’altro • Sia (u,v) un arco di un grafo orientato. Allora: – (u,v) è un arco dell’albero DFS, oppure – i nodi u e v sono l’uno discendente/antenato dell’altro, oppure – (u,v) è un arco trasversale a sinistra, ovvero il vertice v è in un sottoalbero visitato precedentemente ad u 29 Copyright © 2004 - The McGraw - Hill Companies, srl Algoritmi e strutture dati Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Riepilogo • Concetto di grafo e terminologia • Diverse strutture dati per rappresentare grafi nella memoria di un calcolatore • L’utilizzo di una particolare rappresentazione può avere un impatto notevole sui tempi di esecuzione di un algoritmo su grafi (ad esempio, nella visita di un grafo) • Algoritmo di visita generica e due casi particolari: visita in ampiezza e visita in profondità 30 Copyright © 2004 - The McGraw - Hill Companies, srl